Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Apache
: 172.26.7.228 | : 3.133.110.37
Cant Read [ /etc/named.conf ]
5.6.40-24+ubuntu18.04.1+deb.sury.org+1
www-data
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
HASH IDENTIFIER
README
+ Create Folder
+ Create File
/
home /
ubuntu /
ImageMagick-7.0.10-22 /
MagickCore /
[ HOME SHELL ]
Name
Size
Permission
Action
.deps
[ DIR ]
drwxrwxr-x
.libs
[ DIR ]
drwxrwxr-x
.dirstamp
0
B
-rw-rw-r--
ImageMagick-7.Q16HDRI.pc
867
B
-rw-rw-r--
ImageMagick.pc
867
B
-rw-rw-r--
ImageMagick.pc.in
575
B
-rw-rw-r--
MagickCore-7.Q16HDRI.pc
916
B
-rw-rw-r--
MagickCore-config
1.5
KB
-rwxrwxr-x
MagickCore-config.1
1.85
KB
-rw-rw-r--
MagickCore-config.in
1.57
KB
-rw-rw-r--
MagickCore.h
4.94
KB
-rw-rw-r--
MagickCore.pc
916
B
-rw-rw-r--
MagickCore.pc.in
688
B
-rw-rw-r--
Makefile.am
14.76
KB
-rw-rw-r--
accelerate-kernels-private.h
102.16
KB
-rw-rw-r--
accelerate-private.h
2.63
KB
-rw-rw-r--
accelerate.c
169.72
KB
-rw-rw-r--
animate-private.h
1.23
KB
-rw-rw-r--
animate.c
103.29
KB
-rw-rw-r--
animate.h
979
B
-rw-rw-r--
annotate-private.h
1022
B
-rw-rw-r--
annotate.c
71.69
KB
-rw-rw-r--
annotate.h
1.26
KB
-rw-rw-r--
artifact.c
18.74
KB
-rw-rw-r--
artifact.h
1.35
KB
-rw-rw-r--
attribute.c
69.33
KB
-rw-rw-r--
attribute.h
1.78
KB
-rw-rw-r--
blob-private.h
4.07
KB
-rw-rw-r--
blob.c
207.68
KB
-rw-rw-r--
blob.h
3.29
KB
-rw-rw-r--
cache-private.h
6.63
KB
-rw-rw-r--
cache-view.c
44.83
KB
-rw-rw-r--
cache-view.h
3.63
KB
-rw-rw-r--
cache.c
211.11
KB
-rw-rw-r--
cache.h
2.5
KB
-rw-rw-r--
channel.c
41.69
KB
-rw-rw-r--
channel.h
1.28
KB
-rw-rw-r--
cipher.c
40.58
KB
-rw-rw-r--
cipher.h
1.11
KB
-rw-rw-r--
client.c
7.37
KB
-rw-rw-r--
client.h
1.03
KB
-rw-rw-r--
coder-private.h
1005
B
-rw-rw-r--
coder.c
20.03
KB
-rw-rw-r--
coder.h
1.28
KB
-rw-rw-r--
color-private.h
2.28
KB
-rw-rw-r--
color.c
105.5
KB
-rw-rw-r--
color.h
2.22
KB
-rw-rw-r--
colormap-private.h
1.8
KB
-rw-rw-r--
colormap.c
13.3
KB
-rw-rw-r--
colormap.h
1.05
KB
-rw-rw-r--
colorspace-private.h
4.23
KB
-rw-rw-r--
colorspace.c
99.03
KB
-rw-rw-r--
colorspace.h
2.35
KB
-rw-rw-r--
compare.c
72.32
KB
-rw-rw-r--
compare.h
1.86
KB
-rw-rw-r--
composite-private.h
5.5
KB
-rw-rw-r--
composite.c
81.18
KB
-rw-rw-r--
composite.h
2.85
KB
-rw-rw-r--
compress.c
39.93
KB
-rw-rw-r--
compress.h
2.15
KB
-rw-rw-r--
configure-private.h
1019
B
-rw-rw-r--
configure.c
44.68
KB
-rw-rw-r--
configure.h
1.65
KB
-rw-rw-r--
constitute-private.h
890
B
-rw-rw-r--
constitute.c
50.54
KB
-rw-rw-r--
constitute.h
1.45
KB
-rw-rw-r--
decorate.c
31.1
KB
-rw-rw-r--
decorate.h
1.34
KB
-rw-rw-r--
delegate-private.h
2.16
KB
-rw-rw-r--
delegate.c
83.77
KB
-rw-rw-r--
delegate.h
1.98
KB
-rw-rw-r--
deprecate.c
13.45
KB
-rw-rw-r--
deprecate.h
1.21
KB
-rw-rw-r--
display-private.h
1.24
KB
-rw-rw-r--
display.c
515.56
KB
-rw-rw-r--
display.h
1.05
KB
-rw-rw-r--
distort.c
134.29
KB
-rw-rw-r--
distort.h
2.65
KB
-rw-rw-r--
distribute-cache-private.h
2.24
KB
-rw-rw-r--
distribute-cache.c
49.1
KB
-rw-rw-r--
distribute-cache.h
997
B
-rw-rw-r--
draw-private.h
2.1
KB
-rw-rw-r--
draw.c
245.29
KB
-rw-rw-r--
draw.h
5.55
KB
-rw-rw-r--
effect.c
125.86
KB
-rw-rw-r--
effect.h
2.85
KB
-rw-rw-r--
enhance.c
137.51
KB
-rw-rw-r--
enhance.h
2.32
KB
-rw-rw-r--
exception-private.h
3.18
KB
-rw-rw-r--
exception.c
44.49
KB
-rw-rw-r--
exception.h
4.35
KB
-rw-rw-r--
feature.c
83.79
KB
-rw-rw-r--
feature.h
1.7
KB
-rw-rw-r--
fourier.c
49.36
KB
-rw-rw-r--
fourier.h
1.38
KB
-rw-rw-r--
fx-private.h
1.21
KB
-rw-rw-r--
fx.c
87.87
KB
-rw-rw-r--
fx.h
956
B
-rw-rw-r--
gem-private.h
6.28
KB
-rw-rw-r--
gem.c
53.31
KB
-rw-rw-r--
gem.h
1.15
KB
-rw-rw-r--
geometry.c
55.44
KB
-rw-rw-r--
geometry.h
3.98
KB
-rw-rw-r--
histogram.c
39.72
KB
-rw-rw-r--
histogram.h
1.35
KB
-rw-rw-r--
identify.c
57.07
KB
-rw-rw-r--
identify.h
971
B
-rw-rw-r--
image-private.h
2.89
KB
-rw-rw-r--
image-view.c
42.98
KB
-rw-rw-r--
image-view.h
2.72
KB
-rw-rw-r--
image.c
142.86
KB
-rw-rw-r--
image.h
13.87
KB
-rw-rw-r--
layer.c
75.49
KB
-rw-rw-r--
layer.h
2
KB
-rw-rw-r--
libMagickCore-7.Q16HDRI.la
1.32
KB
-rw-rw-r--
libMagickCore.map
46
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-acc...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-acc...
6.25
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ani...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ani...
245.7
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ann...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ann...
225.34
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-art...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-art...
57.34
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-att...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-att...
198.58
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-blo...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-blo...
559.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
130.77
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
575.03
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cha...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cha...
132.27
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cip...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cip...
99.63
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cli...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cli...
11.99
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cod...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cod...
48.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
187.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
64.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
416.23
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
244.2
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
205.62
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
116.91
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
92.49
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
134.21
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dec...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dec...
140.39
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-del...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-del...
181.88
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dep...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dep...
40.1
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
1001.06
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
257.94
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
392
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
138.98
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dra...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dra...
629.21
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-eff...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-eff...
359.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-enh...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-enh...
435.72
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-exc...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-exc...
79.98
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fea...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fea...
231.75
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fou...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fou...
147.25
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fx....
350
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fx....
285.02
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-gem...
353
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-gem...
222.46
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-geo...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-geo...
111.41
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-his...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-his...
103.51
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ide...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ide...
183.14
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
103.35
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
311.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lay...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lay...
140.62
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lin...
377
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lin...
41.23
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lis...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lis...
137.44
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-loc...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-loc...
93.1
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-log...
353
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-log...
109.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
54.52
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
123.44
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mat...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mat...
90.06
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mem...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mem...
64.4
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mim...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mim...
69.73
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mod...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mod...
46.27
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
37.7
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
102.55
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mor...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mor...
249.84
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ope...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ope...
14.32
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-opt...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-opt...
238.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pai...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pai...
158.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pix...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pix...
1.12
MB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pol...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pol...
84.46
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pre...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pre...
50.55
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
178.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
375.58
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
308.11
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
886.72
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
690.47
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
93.22
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ran...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ran...
71.95
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-reg...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-reg...
58.8
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
101.68
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
484.14
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
130.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-seg...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-seg...
137.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sem...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sem...
27.5
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-she...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-she...
209.97
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sig...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sig...
77.59
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-spl...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-spl...
71.54
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
42.69
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
361.96
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
389.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
145.78
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
9.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
223.15
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tim...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tim...
38.76
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tok...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tok...
220.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tra...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tra...
228.2
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-typ...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-typ...
88.52
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-uti...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-uti...
121.42
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ver...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ver...
27.84
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
161.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
490.88
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-wid...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-wid...
450.54
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xml...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xml...
166.75
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xwi...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xwi...
641.91
KB
-rw-rw-r--
linked-list.c
33.55
KB
-rw-rw-r--
linked-list.h
1.92
KB
-rw-rw-r--
list.c
52.79
KB
-rw-rw-r--
list.h
2.3
KB
-rw-rw-r--
locale-private.h
1.35
KB
-rw-rw-r--
locale.c
58.89
KB
-rw-rw-r--
locale_.h
2.2
KB
-rw-rw-r--
log-private.h
1
KB
-rw-rw-r--
log.c
56.53
KB
-rw-rw-r--
log.h
2.73
KB
-rw-rw-r--
magic-private.h
999
B
-rw-rw-r--
magic.c
27.52
KB
-rw-rw-r--
magic.h
1.32
KB
-rw-rw-r--
magick-baseconfig.h
44.5
KB
-rw-rw-r--
magick-config.h
8.75
KB
-rw-rw-r--
magick-private.h
1.04
KB
-rw-rw-r--
magick-type.h
5.78
KB
-rw-rw-r--
magick.c
66.91
KB
-rw-rw-r--
magick.h
4.18
KB
-rw-rw-r--
matrix-private.h
1.1
KB
-rw-rw-r--
matrix.c
38.14
KB
-rw-rw-r--
matrix.h
1.53
KB
-rw-rw-r--
memory-private.h
1.49
KB
-rw-rw-r--
memory.c
51.43
KB
-rw-rw-r--
memory_.h
3.24
KB
-rw-rw-r--
method-attribute.h
4.03
KB
-rw-rw-r--
methods-private.h
0
B
-rw-rw-r--
methods.h
79.51
KB
-rw-rw-r--
mime-private.h
1.07
KB
-rw-rw-r--
mime.c
35.56
KB
-rw-rw-r--
mime.h
1.38
KB
-rw-rw-r--
module-private.h
1.05
KB
-rw-rw-r--
module.c
56.79
KB
-rw-rw-r--
module.h
1.99
KB
-rw-rw-r--
monitor-private.h
1023
B
-rw-rw-r--
monitor.c
10.83
KB
-rw-rw-r--
monitor.h
1.56
KB
-rw-rw-r--
montage.c
32.5
KB
-rw-rw-r--
montage.h
1.78
KB
-rw-rw-r--
morphology-private.h
1.17
KB
-rw-rw-r--
morphology.c
177.3
KB
-rw-rw-r--
morphology.h
4.45
KB
-rw-rw-r--
mutex.h
3.03
KB
-rw-rw-r--
nt-base-private.h
3.26
KB
-rw-rw-r--
nt-base.c
90.09
KB
-rw-rw-r--
nt-base.h
8.03
KB
-rw-rw-r--
nt-feature.c
13.72
KB
-rw-rw-r--
nt-feature.h
1.11
KB
-rw-rw-r--
opencl-private.h
14.79
KB
-rw-rw-r--
opencl.c
104.16
KB
-rw-rw-r--
opencl.h
1.98
KB
-rw-rw-r--
option-private.h
872
B
-rw-rw-r--
option.c
168.81
KB
-rw-rw-r--
option.h
6.26
KB
-rw-rw-r--
paint.c
42.91
KB
-rw-rw-r--
paint.h
1.62
KB
-rw-rw-r--
pixel-accessor.h
28.36
KB
-rw-rw-r--
pixel-private.h
869
B
-rw-rw-r--
pixel.c
202.86
KB
-rw-rw-r--
pixel.h
7.18
KB
-rw-rw-r--
policy-private.h
1.22
KB
-rw-rw-r--
policy.c
41.97
KB
-rw-rw-r--
policy.h
1.88
KB
-rw-rw-r--
prepress.c
6.08
KB
-rw-rw-r--
prepress.h
939
B
-rw-rw-r--
profile-private.h
984
B
-rw-rw-r--
profile.c
85.4
KB
-rw-rw-r--
profile.h
1.64
KB
-rw-rw-r--
property.c
148.71
KB
-rw-rw-r--
property.h
1.66
KB
-rw-rw-r--
quantize.c
133.36
KB
-rw-rw-r--
quantize.h
2.05
KB
-rw-rw-r--
quantum-export.c
124.46
KB
-rw-rw-r--
quantum-import.c
145.28
KB
-rw-rw-r--
quantum-private.h
19.37
KB
-rw-rw-r--
quantum.c
38.9
KB
-rw-rw-r--
quantum.h
5.1
KB
-rw-rw-r--
random-private.h
2.16
KB
-rw-rw-r--
random.c
33.01
KB
-rw-rw-r--
random_.h
1.49
KB
-rw-rw-r--
registry-private.h
1014
B
-rw-rw-r--
registry.c
18.63
KB
-rw-rw-r--
registry.h
1.41
KB
-rw-rw-r--
resample-private.h
2.21
KB
-rw-rw-r--
resample.c
56.74
KB
-rw-rw-r--
resample.h
2.72
KB
-rw-rw-r--
resize-private.h
2.02
KB
-rw-rw-r--
resize.c
149.98
KB
-rw-rw-r--
resize.h
1.71
KB
-rw-rw-r--
resource-private.h
1.11
KB
-rw-rw-r--
resource.c
47.74
KB
-rw-rw-r--
resource_.h
1.69
KB
-rw-rw-r--
segment.c
60.41
KB
-rw-rw-r--
segment.h
1.09
KB
-rw-rw-r--
semaphore-private.h
1009
B
-rw-rw-r--
semaphore.c
16.58
KB
-rw-rw-r--
semaphore.h
1.15
KB
-rw-rw-r--
shear.c
56.66
KB
-rw-rw-r--
shear.h
1.11
KB
-rw-rw-r--
signature-private.h
1.5
KB
-rw-rw-r--
signature.c
28.84
KB
-rw-rw-r--
signature.h
947
B
-rw-rw-r--
splay-tree.c
54.92
KB
-rw-rw-r--
splay-tree.h
1.98
KB
-rw-rw-r--
static.c
13.23
KB
-rw-rw-r--
static.h
10.11
KB
-rw-rw-r--
statistic.c
91.04
KB
-rw-rw-r--
statistic.h
4.25
KB
-rw-rw-r--
stream-private.h
1.04
KB
-rw-rw-r--
stream.c
97.33
KB
-rw-rw-r--
stream.h
1.57
KB
-rw-rw-r--
string-private.h
3.17
KB
-rw-rw-r--
string.c
90.27
KB
-rw-rw-r--
string_.h
3.61
KB
-rw-rw-r--
studio.h
9.23
KB
-rw-rw-r--
thread-private.h
3.87
KB
-rw-rw-r--
thread.c
9.62
KB
-rw-rw-r--
thread_.h
1.59
KB
-rw-rw-r--
threshold.c
81.92
KB
-rw-rw-r--
threshold.h
2.01
KB
-rw-rw-r--
timer-private.h
1.53
KB
-rw-rw-r--
timer.c
21.71
KB
-rw-rw-r--
timer.h
1.57
KB
-rw-rw-r--
token-private.h
4.27
KB
-rw-rw-r--
token.c
30.01
KB
-rw-rw-r--
token.h
1.48
KB
-rw-rw-r--
transform-private.h
997
B
-rw-rw-r--
transform.c
78.58
KB
-rw-rw-r--
transform.h
1.76
KB
-rw-rw-r--
type-private.h
1000
B
-rw-rw-r--
type.c
44.45
KB
-rw-rw-r--
type.h
1.94
KB
-rw-rw-r--
utility-private.h
7.37
KB
-rw-rw-r--
utility.c
60.19
KB
-rw-rw-r--
utility.h
1.62
KB
-rw-rw-r--
version-private.h
984
B
-rw-rw-r--
version.c
22.62
KB
-rw-rw-r--
version.h
3.02
KB
-rw-rw-r--
version.h.in
3.29
KB
-rw-rw-r--
vision.c
49.74
KB
-rw-rw-r--
vision.h
1.22
KB
-rw-rw-r--
visual-effects.c
122.12
KB
-rw-rw-r--
visual-effects.h
2.81
KB
-rw-rw-r--
widget-private.h
2.59
KB
-rw-rw-r--
widget.c
320.79
KB
-rw-rw-r--
widget.h
852
B
-rw-rw-r--
xml-tree-private.h
1.62
KB
-rw-rw-r--
xml-tree.c
93.09
KB
-rw-rw-r--
xml-tree.h
1.46
KB
-rw-rw-r--
xwindow-private.h
11.19
KB
-rw-rw-r--
xwindow.c
338.16
KB
-rw-rw-r--
xwindow.h
1.11
KB
-rw-rw-r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : quantum-import.c
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % IIIII M M PPPP OOO RRRR TTTTT % % I MM MM P P O O R R T % % I M M M PPPP O O RRRR T % % I M M P O O R R T % % IIIII M M P OOO R R T % % % % MagickCore Methods to Import Quantum Pixels % % % % Software Design % % Cristy % % October 1998 % % % % % % Copyright 1999-2020 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/cache.h" #include "MagickCore/constitute.h" #include "MagickCore/delegate.h" #include "MagickCore/geometry.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/statistic.h" #include "MagickCore/stream.h" #include "MagickCore/string_.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I m p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ImportQuantumPixels() transfers one or more pixel components from a user % supplied buffer into the image pixel cache of an image. The pixels are % expected in network byte order. It returns MagickTrue if the pixels are % successfully transferred, otherwise MagickFalse. % % The format of the ImportQuantumPixels method is: % % size_t ImportQuantumPixels(const Image *image,CacheView *image_view, % QuantumInfo *quantum_info,const QuantumType quantum_type, % const unsigned char *magick_restrict pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (red, green, % blue, opacity, RGB, or RGBA). % % o pixels: The pixel components are transferred from this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline Quantum PushColormapIndex(const Image *image,const size_t index, MagickBooleanType *range_exception) { if (index < image->colors) return((Quantum) index); *range_exception=MagickTrue; return((Quantum) 0); } static inline const unsigned char *PushDoublePixel(QuantumInfo *quantum_info, const unsigned char *magick_restrict pixels,double *pixel) { double *p; unsigned char quantum[8]; if (quantum_info->endian == LSBEndian) { quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); quantum[4]=(*pixels++); quantum[5]=(*pixels++); quantum[6]=(*pixels++); quantum[7]=(*pixels++); } else { quantum[7]=(*pixels++); quantum[6]=(*pixels++); quantum[5]=(*pixels++); quantum[4]=(*pixels++); quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); } p=(double *) quantum; *pixel=(*p); *pixel-=quantum_info->minimum; *pixel*=quantum_info->scale; return(pixels); } static inline float ScaleFloatPixel(const QuantumInfo *quantum_info, const unsigned char *quantum) { float pixel; pixel=(*((float *) quantum)); pixel-=quantum_info->minimum; pixel*=(float) quantum_info->scale; if (pixel < FLT_MIN) pixel=FLT_MIN; else if (pixel > FLT_MAX) pixel=FLT_MAX; return(pixel); } static inline const unsigned char *PushQuantumFloatPixel( const QuantumInfo *quantum_info,const unsigned char *magick_restrict pixels, float *pixel) { unsigned char quantum[4]; if (quantum_info->endian == LSBEndian) { quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); } else { quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); } *pixel=ScaleFloatPixel(quantum_info,quantum); return(pixels); } static inline const unsigned char *PushQuantumFloat24Pixel( const QuantumInfo *quantum_info,const unsigned char *magick_restrict pixels, float *pixel) { unsigned char quantum[4]; if (quantum_info->endian == LSBEndian) { quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); } else { quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); } if ((quantum[0] | quantum[1] | quantum[2]) == 0U) quantum[3]=0; else { unsigned char exponent, sign_bit; sign_bit=(quantum[2] & 0x80); exponent=(quantum[2] & 0x7F); if (exponent != 0) exponent=exponent-63+127; quantum[3]=sign_bit | (exponent >> 1); quantum[2]=((exponent & 1) << 7) | ((quantum[1] & 0xFE) >> 1); quantum[1]=((quantum[1] & 0x01) << 7) | ((quantum[0] & 0xFE) >> 1); quantum[0]=(quantum[0] & 0x01) << 7; } *pixel=ScaleFloatPixel(quantum_info,quantum); return(pixels); } static inline const unsigned char *PushQuantumPixel(QuantumInfo *quantum_info, const unsigned char *magick_restrict pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=(QuantumAny) 0; for (i=(ssize_t) quantum_info->depth; i > 0L; ) { if (quantum_info->state.bits == 0UL) { quantum_info->state.pixel=(*pixels++); quantum_info->state.bits=8UL; } quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; i-=(ssize_t) quantum_bits; quantum_info->state.bits-=quantum_bits; *quantum=(unsigned int) ((*quantum << quantum_bits) | ((quantum_info->state.pixel >> quantum_info->state.bits) &~ ((~0UL) << quantum_bits))); } return(pixels); } static inline const unsigned char *PushQuantumLongPixel( QuantumInfo *quantum_info,const unsigned char *magick_restrict pixels, unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=0UL; for (i=(ssize_t) quantum_info->depth; i > 0; ) { if (quantum_info->state.bits == 0) { pixels=PushLongPixel(quantum_info->endian,pixels, &quantum_info->state.pixel); quantum_info->state.bits=32U; } quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; *quantum|=(((quantum_info->state.pixel >> (32U-quantum_info->state.bits)) & quantum_info->state.mask[quantum_bits]) << (quantum_info->depth-i)); i-=(ssize_t) quantum_bits; quantum_info->state.bits-=quantum_bits; } return(pixels); } static void ImportAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportBGRQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } else { unsigned int pixel; if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBGRAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBGROQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelOpacity(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBlackQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportBlueQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportCbYCrYQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 10: { Quantum cbcr[4]; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) (number_pixels-3); x+=4) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } cbcr[i]=(Quantum) (quantum); n++; } p+=quantum_info->pad; SetPixelRed(image,cbcr[1],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=GetPixelChannels(image); SetPixelRed(image,cbcr[3],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportGrayQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 1: { register Quantum black, white; black=(Quantum) 0; white=QuantumRange; if (quantum_info->min_is_white != MagickFalse) { black=QuantumRange; white=(Quantum) 0; } for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { SetPixelGray(image,((*p) & (1 << (7-bit))) == 0 ? black : white,q); q+=GetPixelChannels(image); } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { SetPixelGray(image,((*p) & (0x01 << (7-bit))) == 0 ? black : white,q); q+=GetPixelChannels(image); } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); pixel=(unsigned char) ((*p) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) (*p++ >> 4); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,QuantumRange-ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; pixel=0; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { if (image->endian == LSBEndian) { for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (x++ < (ssize_t) (number_pixels-1)) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); q+=GetPixelChannels(image); } if (x++ < (ssize_t) number_pixels) { SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range), q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range), q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (x++ < (ssize_t) (number_pixels-1)) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); q+=GetPixelChannels(image); } if (x++ < (ssize_t) number_pixels) { SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (bit != 0) p++; break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 16: { unsigned short pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,QuantumRange-ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->format == SignedQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); pixel=(unsigned short) (((unsigned int) pixel+32768) % 65536); SetPixelGray(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportGrayAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 1: { register unsigned char pixel; bit=0; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { for (bit=0; bit < 8; bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } p++; } if ((number_pixels % 4) != 0) for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel != 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 12: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportGreenQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportIndexQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { MagickBooleanType range_exception; register ssize_t x; ssize_t bit; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception), q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } break; } case 4: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); pixel=(unsigned char) ((*p) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p++; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) ((*p++ >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum((double) QuantumRange* HalfToSinglePrecision(pixel)),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, "InvalidColormapIndex","`%s'",image->filename); } static void ImportIndexAlphaQuantum(const Image *image, QuantumInfo *quantum_info,const MagickSizeType number_pixels, const unsigned char *magick_restrict p,Quantum *magick_restrict q, ExceptionInfo *exception) { MagickBooleanType range_exception; QuantumAny range; register ssize_t x; ssize_t bit; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { for (bit=0; bit < 8; bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); q+=GetPixelChannels(image); } } if ((number_pixels % 4) != 0) for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum((double) QuantumRange* HalfToSinglePrecision(pixel)),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel, &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,(size_t) ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, "InvalidColormapIndex","`%s'",image->filename); } static void ImportOpacityQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportRedQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportRGBQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } else { unsigned int pixel; if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportRGBAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportRGBOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { unsigned int pixel; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelOpacity(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 24: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloat24Pixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } else { unsigned int pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { unsigned int pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } MagickExport size_t ImportQuantumPixels(const Image *image, CacheView *image_view,QuantumInfo *quantum_info, const QuantumType quantum_type,const unsigned char *magick_restrict pixels, ExceptionInfo *exception) { MagickSizeType number_pixels; register const unsigned char *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; size_t extent; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickCoreSignature); if (pixels == (const unsigned char *) NULL) pixels=(const unsigned char *) GetQuantumPixels(quantum_info); x=0; p=pixels; if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); q=GetAuthenticPixelQueue(image); } else { number_pixels=GetCacheViewExtent(image_view); q=GetCacheViewAuthenticPixelQueue(image_view); } ResetQuantumState(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); switch (quantum_type) { case AlphaQuantum: { ImportAlphaQuantum(image,quantum_info,number_pixels,p,q); break; } case BGRQuantum: { ImportBGRQuantum(image,quantum_info,number_pixels,p,q); break; } case BGRAQuantum: { ImportBGRAQuantum(image,quantum_info,number_pixels,p,q); break; } case BGROQuantum: { ImportBGROQuantum(image,quantum_info,number_pixels,p,q); break; } case BlackQuantum: { ImportBlackQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BlueQuantum: case YellowQuantum: { ImportBlueQuantum(image,quantum_info,number_pixels,p,q); break; } case CMYKQuantum: { ImportCMYKQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKAQuantum: { ImportCMYKAQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKOQuantum: { ImportCMYKOQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CbYCrYQuantum: { ImportCbYCrYQuantum(image,quantum_info,number_pixels,p,q); break; } case GrayQuantum: { ImportGrayQuantum(image,quantum_info,number_pixels,p,q); break; } case GrayAlphaQuantum: { ImportGrayAlphaQuantum(image,quantum_info,number_pixels,p,q); break; } case GreenQuantum: case MagentaQuantum: { ImportGreenQuantum(image,quantum_info,number_pixels,p,q); break; } case IndexQuantum: { ImportIndexQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case IndexAlphaQuantum: { ImportIndexAlphaQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case OpacityQuantum: { ImportOpacityQuantum(image,quantum_info,number_pixels,p,q); break; } case RedQuantum: case CyanQuantum: { ImportRedQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBQuantum: case CbYCrQuantum: { ImportRGBQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBAQuantum: case CbYCrAQuantum: { ImportRGBAQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBOQuantum: { ImportRGBOQuantum(image,quantum_info,number_pixels,p,q); break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=GetPixelChannels(image); } } if (quantum_info->alpha_type == AssociatedQuantumAlpha) { double gamma, Sa; /* Disassociate alpha. */ q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { register ssize_t i; Sa=QuantumScale*GetPixelAlpha(image,q); gamma=PerceptibleReciprocal(Sa); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if ((channel == AlphaPixelChannel) || ((traits & UpdatePixelTrait) == 0)) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } } return(extent); }
Close