Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Apache
: 172.26.7.228 | : 3.145.92.96
Cant Read [ /etc/named.conf ]
5.6.40-24+ubuntu18.04.1+deb.sury.org+1
www-data
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
HASH IDENTIFIER
README
+ Create Folder
+ Create File
/
home /
ubuntu /
ImageMagick-7.0.10-22 /
MagickCore /
[ HOME SHELL ]
Name
Size
Permission
Action
.deps
[ DIR ]
drwxrwxr-x
.libs
[ DIR ]
drwxrwxr-x
.dirstamp
0
B
-rw-rw-r--
ImageMagick-7.Q16HDRI.pc
867
B
-rw-rw-r--
ImageMagick.pc
867
B
-rw-rw-r--
ImageMagick.pc.in
575
B
-rw-rw-r--
MagickCore-7.Q16HDRI.pc
916
B
-rw-rw-r--
MagickCore-config
1.5
KB
-rwxrwxr-x
MagickCore-config.1
1.85
KB
-rw-rw-r--
MagickCore-config.in
1.57
KB
-rw-rw-r--
MagickCore.h
4.94
KB
-rw-rw-r--
MagickCore.pc
916
B
-rw-rw-r--
MagickCore.pc.in
688
B
-rw-rw-r--
Makefile.am
14.76
KB
-rw-rw-r--
accelerate-kernels-private.h
102.16
KB
-rw-rw-r--
accelerate-private.h
2.63
KB
-rw-rw-r--
accelerate.c
169.72
KB
-rw-rw-r--
animate-private.h
1.23
KB
-rw-rw-r--
animate.c
103.29
KB
-rw-rw-r--
animate.h
979
B
-rw-rw-r--
annotate-private.h
1022
B
-rw-rw-r--
annotate.c
71.69
KB
-rw-rw-r--
annotate.h
1.26
KB
-rw-rw-r--
artifact.c
18.74
KB
-rw-rw-r--
artifact.h
1.35
KB
-rw-rw-r--
attribute.c
69.33
KB
-rw-rw-r--
attribute.h
1.78
KB
-rw-rw-r--
blob-private.h
4.07
KB
-rw-rw-r--
blob.c
207.68
KB
-rw-rw-r--
blob.h
3.29
KB
-rw-rw-r--
cache-private.h
6.63
KB
-rw-rw-r--
cache-view.c
44.83
KB
-rw-rw-r--
cache-view.h
3.63
KB
-rw-rw-r--
cache.c
211.11
KB
-rw-rw-r--
cache.h
2.5
KB
-rw-rw-r--
channel.c
41.69
KB
-rw-rw-r--
channel.h
1.28
KB
-rw-rw-r--
cipher.c
40.58
KB
-rw-rw-r--
cipher.h
1.11
KB
-rw-rw-r--
client.c
7.37
KB
-rw-rw-r--
client.h
1.03
KB
-rw-rw-r--
coder-private.h
1005
B
-rw-rw-r--
coder.c
20.03
KB
-rw-rw-r--
coder.h
1.28
KB
-rw-rw-r--
color-private.h
2.28
KB
-rw-rw-r--
color.c
105.5
KB
-rw-rw-r--
color.h
2.22
KB
-rw-rw-r--
colormap-private.h
1.8
KB
-rw-rw-r--
colormap.c
13.3
KB
-rw-rw-r--
colormap.h
1.05
KB
-rw-rw-r--
colorspace-private.h
4.23
KB
-rw-rw-r--
colorspace.c
99.03
KB
-rw-rw-r--
colorspace.h
2.35
KB
-rw-rw-r--
compare.c
72.32
KB
-rw-rw-r--
compare.h
1.86
KB
-rw-rw-r--
composite-private.h
5.5
KB
-rw-rw-r--
composite.c
81.18
KB
-rw-rw-r--
composite.h
2.85
KB
-rw-rw-r--
compress.c
39.93
KB
-rw-rw-r--
compress.h
2.15
KB
-rw-rw-r--
configure-private.h
1019
B
-rw-rw-r--
configure.c
44.68
KB
-rw-rw-r--
configure.h
1.65
KB
-rw-rw-r--
constitute-private.h
890
B
-rw-rw-r--
constitute.c
50.54
KB
-rw-rw-r--
constitute.h
1.45
KB
-rw-rw-r--
decorate.c
31.1
KB
-rw-rw-r--
decorate.h
1.34
KB
-rw-rw-r--
delegate-private.h
2.16
KB
-rw-rw-r--
delegate.c
83.77
KB
-rw-rw-r--
delegate.h
1.98
KB
-rw-rw-r--
deprecate.c
13.45
KB
-rw-rw-r--
deprecate.h
1.21
KB
-rw-rw-r--
display-private.h
1.24
KB
-rw-rw-r--
display.c
515.56
KB
-rw-rw-r--
display.h
1.05
KB
-rw-rw-r--
distort.c
134.29
KB
-rw-rw-r--
distort.h
2.65
KB
-rw-rw-r--
distribute-cache-private.h
2.24
KB
-rw-rw-r--
distribute-cache.c
49.1
KB
-rw-rw-r--
distribute-cache.h
997
B
-rw-rw-r--
draw-private.h
2.1
KB
-rw-rw-r--
draw.c
245.29
KB
-rw-rw-r--
draw.h
5.55
KB
-rw-rw-r--
effect.c
125.86
KB
-rw-rw-r--
effect.h
2.85
KB
-rw-rw-r--
enhance.c
137.51
KB
-rw-rw-r--
enhance.h
2.32
KB
-rw-rw-r--
exception-private.h
3.18
KB
-rw-rw-r--
exception.c
44.49
KB
-rw-rw-r--
exception.h
4.35
KB
-rw-rw-r--
feature.c
83.79
KB
-rw-rw-r--
feature.h
1.7
KB
-rw-rw-r--
fourier.c
49.36
KB
-rw-rw-r--
fourier.h
1.38
KB
-rw-rw-r--
fx-private.h
1.21
KB
-rw-rw-r--
fx.c
87.87
KB
-rw-rw-r--
fx.h
956
B
-rw-rw-r--
gem-private.h
6.28
KB
-rw-rw-r--
gem.c
53.31
KB
-rw-rw-r--
gem.h
1.15
KB
-rw-rw-r--
geometry.c
55.44
KB
-rw-rw-r--
geometry.h
3.98
KB
-rw-rw-r--
histogram.c
39.72
KB
-rw-rw-r--
histogram.h
1.35
KB
-rw-rw-r--
identify.c
57.07
KB
-rw-rw-r--
identify.h
971
B
-rw-rw-r--
image-private.h
2.89
KB
-rw-rw-r--
image-view.c
42.98
KB
-rw-rw-r--
image-view.h
2.72
KB
-rw-rw-r--
image.c
142.86
KB
-rw-rw-r--
image.h
13.87
KB
-rw-rw-r--
layer.c
75.49
KB
-rw-rw-r--
layer.h
2
KB
-rw-rw-r--
libMagickCore-7.Q16HDRI.la
1.32
KB
-rw-rw-r--
libMagickCore.map
46
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-acc...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-acc...
6.25
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ani...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ani...
245.7
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ann...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ann...
225.34
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-art...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-art...
57.34
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-att...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-att...
198.58
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-blo...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-blo...
559.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
130.77
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cac...
575.03
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cha...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cha...
132.27
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cip...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cip...
99.63
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cli...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cli...
11.99
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cod...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-cod...
48.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
187.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
64.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-col...
416.23
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
244.2
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
205.62
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-com...
116.91
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
92.49
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-con...
134.21
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dec...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dec...
140.39
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-del...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-del...
181.88
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dep...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dep...
40.1
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
1001.06
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
257.94
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
392
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dis...
138.98
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dra...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-dra...
629.21
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-eff...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-eff...
359.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-enh...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-enh...
435.72
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-exc...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-exc...
79.98
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fea...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fea...
231.75
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fou...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fou...
147.25
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fx....
350
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-fx....
285.02
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-gem...
353
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-gem...
222.46
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-geo...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-geo...
111.41
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-his...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-his...
103.51
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ide...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ide...
183.14
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
103.35
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ima...
311.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lay...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lay...
140.62
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lin...
377
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lin...
41.23
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lis...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-lis...
137.44
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-loc...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-loc...
93.1
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-log...
353
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-log...
109.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
54.52
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mag...
123.44
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mat...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mat...
90.06
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mem...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mem...
64.4
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mim...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mim...
69.73
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mod...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mod...
46.27
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
37.7
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mon...
102.55
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mor...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-mor...
249.84
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ope...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ope...
14.32
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-opt...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-opt...
238.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pai...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pai...
158.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pix...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pix...
1.12
MB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pol...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pol...
84.46
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pre...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pre...
50.55
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
178.05
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-pro...
375.58
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
308.11
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
886.72
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
690.47
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-qua...
93.22
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ran...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ran...
71.95
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-reg...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-reg...
58.8
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
101.68
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
484.14
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-res...
130.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-seg...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-seg...
137.09
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sem...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sem...
27.5
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-she...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-she...
209.97
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sig...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sig...
77.59
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-spl...
374
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-spl...
71.54
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
42.69
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-sta...
361.96
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
389.89
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-str...
145.78
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
9.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-thr...
223.15
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tim...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tim...
38.76
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tok...
359
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tok...
220.66
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tra...
371
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-tra...
228.2
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-typ...
356
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-typ...
88.52
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-uti...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-uti...
121.42
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ver...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-ver...
27.84
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
161.29
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
386
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-vis...
490.88
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-wid...
362
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-wid...
450.54
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xml...
368
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xml...
166.75
KB
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xwi...
365
B
-rw-rw-r--
libMagickCore_7_Q16HDRI_la-xwi...
641.91
KB
-rw-rw-r--
linked-list.c
33.55
KB
-rw-rw-r--
linked-list.h
1.92
KB
-rw-rw-r--
list.c
52.79
KB
-rw-rw-r--
list.h
2.3
KB
-rw-rw-r--
locale-private.h
1.35
KB
-rw-rw-r--
locale.c
58.89
KB
-rw-rw-r--
locale_.h
2.2
KB
-rw-rw-r--
log-private.h
1
KB
-rw-rw-r--
log.c
56.53
KB
-rw-rw-r--
log.h
2.73
KB
-rw-rw-r--
magic-private.h
999
B
-rw-rw-r--
magic.c
27.52
KB
-rw-rw-r--
magic.h
1.32
KB
-rw-rw-r--
magick-baseconfig.h
44.5
KB
-rw-rw-r--
magick-config.h
8.75
KB
-rw-rw-r--
magick-private.h
1.04
KB
-rw-rw-r--
magick-type.h
5.78
KB
-rw-rw-r--
magick.c
66.91
KB
-rw-rw-r--
magick.h
4.18
KB
-rw-rw-r--
matrix-private.h
1.1
KB
-rw-rw-r--
matrix.c
38.14
KB
-rw-rw-r--
matrix.h
1.53
KB
-rw-rw-r--
memory-private.h
1.49
KB
-rw-rw-r--
memory.c
51.43
KB
-rw-rw-r--
memory_.h
3.24
KB
-rw-rw-r--
method-attribute.h
4.03
KB
-rw-rw-r--
methods-private.h
0
B
-rw-rw-r--
methods.h
79.51
KB
-rw-rw-r--
mime-private.h
1.07
KB
-rw-rw-r--
mime.c
35.56
KB
-rw-rw-r--
mime.h
1.38
KB
-rw-rw-r--
module-private.h
1.05
KB
-rw-rw-r--
module.c
56.79
KB
-rw-rw-r--
module.h
1.99
KB
-rw-rw-r--
monitor-private.h
1023
B
-rw-rw-r--
monitor.c
10.83
KB
-rw-rw-r--
monitor.h
1.56
KB
-rw-rw-r--
montage.c
32.5
KB
-rw-rw-r--
montage.h
1.78
KB
-rw-rw-r--
morphology-private.h
1.17
KB
-rw-rw-r--
morphology.c
177.3
KB
-rw-rw-r--
morphology.h
4.45
KB
-rw-rw-r--
mutex.h
3.03
KB
-rw-rw-r--
nt-base-private.h
3.26
KB
-rw-rw-r--
nt-base.c
90.09
KB
-rw-rw-r--
nt-base.h
8.03
KB
-rw-rw-r--
nt-feature.c
13.72
KB
-rw-rw-r--
nt-feature.h
1.11
KB
-rw-rw-r--
opencl-private.h
14.79
KB
-rw-rw-r--
opencl.c
104.16
KB
-rw-rw-r--
opencl.h
1.98
KB
-rw-rw-r--
option-private.h
872
B
-rw-rw-r--
option.c
168.81
KB
-rw-rw-r--
option.h
6.26
KB
-rw-rw-r--
paint.c
42.91
KB
-rw-rw-r--
paint.h
1.62
KB
-rw-rw-r--
pixel-accessor.h
28.36
KB
-rw-rw-r--
pixel-private.h
869
B
-rw-rw-r--
pixel.c
202.86
KB
-rw-rw-r--
pixel.h
7.18
KB
-rw-rw-r--
policy-private.h
1.22
KB
-rw-rw-r--
policy.c
41.97
KB
-rw-rw-r--
policy.h
1.88
KB
-rw-rw-r--
prepress.c
6.08
KB
-rw-rw-r--
prepress.h
939
B
-rw-rw-r--
profile-private.h
984
B
-rw-rw-r--
profile.c
85.4
KB
-rw-rw-r--
profile.h
1.64
KB
-rw-rw-r--
property.c
148.71
KB
-rw-rw-r--
property.h
1.66
KB
-rw-rw-r--
quantize.c
133.36
KB
-rw-rw-r--
quantize.h
2.05
KB
-rw-rw-r--
quantum-export.c
124.46
KB
-rw-rw-r--
quantum-import.c
145.28
KB
-rw-rw-r--
quantum-private.h
19.37
KB
-rw-rw-r--
quantum.c
38.9
KB
-rw-rw-r--
quantum.h
5.1
KB
-rw-rw-r--
random-private.h
2.16
KB
-rw-rw-r--
random.c
33.01
KB
-rw-rw-r--
random_.h
1.49
KB
-rw-rw-r--
registry-private.h
1014
B
-rw-rw-r--
registry.c
18.63
KB
-rw-rw-r--
registry.h
1.41
KB
-rw-rw-r--
resample-private.h
2.21
KB
-rw-rw-r--
resample.c
56.74
KB
-rw-rw-r--
resample.h
2.72
KB
-rw-rw-r--
resize-private.h
2.02
KB
-rw-rw-r--
resize.c
149.98
KB
-rw-rw-r--
resize.h
1.71
KB
-rw-rw-r--
resource-private.h
1.11
KB
-rw-rw-r--
resource.c
47.74
KB
-rw-rw-r--
resource_.h
1.69
KB
-rw-rw-r--
segment.c
60.41
KB
-rw-rw-r--
segment.h
1.09
KB
-rw-rw-r--
semaphore-private.h
1009
B
-rw-rw-r--
semaphore.c
16.58
KB
-rw-rw-r--
semaphore.h
1.15
KB
-rw-rw-r--
shear.c
56.66
KB
-rw-rw-r--
shear.h
1.11
KB
-rw-rw-r--
signature-private.h
1.5
KB
-rw-rw-r--
signature.c
28.84
KB
-rw-rw-r--
signature.h
947
B
-rw-rw-r--
splay-tree.c
54.92
KB
-rw-rw-r--
splay-tree.h
1.98
KB
-rw-rw-r--
static.c
13.23
KB
-rw-rw-r--
static.h
10.11
KB
-rw-rw-r--
statistic.c
91.04
KB
-rw-rw-r--
statistic.h
4.25
KB
-rw-rw-r--
stream-private.h
1.04
KB
-rw-rw-r--
stream.c
97.33
KB
-rw-rw-r--
stream.h
1.57
KB
-rw-rw-r--
string-private.h
3.17
KB
-rw-rw-r--
string.c
90.27
KB
-rw-rw-r--
string_.h
3.61
KB
-rw-rw-r--
studio.h
9.23
KB
-rw-rw-r--
thread-private.h
3.87
KB
-rw-rw-r--
thread.c
9.62
KB
-rw-rw-r--
thread_.h
1.59
KB
-rw-rw-r--
threshold.c
81.92
KB
-rw-rw-r--
threshold.h
2.01
KB
-rw-rw-r--
timer-private.h
1.53
KB
-rw-rw-r--
timer.c
21.71
KB
-rw-rw-r--
timer.h
1.57
KB
-rw-rw-r--
token-private.h
4.27
KB
-rw-rw-r--
token.c
30.01
KB
-rw-rw-r--
token.h
1.48
KB
-rw-rw-r--
transform-private.h
997
B
-rw-rw-r--
transform.c
78.58
KB
-rw-rw-r--
transform.h
1.76
KB
-rw-rw-r--
type-private.h
1000
B
-rw-rw-r--
type.c
44.45
KB
-rw-rw-r--
type.h
1.94
KB
-rw-rw-r--
utility-private.h
7.37
KB
-rw-rw-r--
utility.c
60.19
KB
-rw-rw-r--
utility.h
1.62
KB
-rw-rw-r--
version-private.h
984
B
-rw-rw-r--
version.c
22.62
KB
-rw-rw-r--
version.h
3.02
KB
-rw-rw-r--
version.h.in
3.29
KB
-rw-rw-r--
vision.c
49.74
KB
-rw-rw-r--
vision.h
1.22
KB
-rw-rw-r--
visual-effects.c
122.12
KB
-rw-rw-r--
visual-effects.h
2.81
KB
-rw-rw-r--
widget-private.h
2.59
KB
-rw-rw-r--
widget.c
320.79
KB
-rw-rw-r--
widget.h
852
B
-rw-rw-r--
xml-tree-private.h
1.62
KB
-rw-rw-r--
xml-tree.c
93.09
KB
-rw-rw-r--
xml-tree.h
1.46
KB
-rw-rw-r--
xwindow-private.h
11.19
KB
-rw-rw-r--
xwindow.c
338.16
KB
-rw-rw-r--
xwindow.h
1.11
KB
-rw-rw-r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : quantum-export.c
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % EEEEE X X PPPP OOO RRRR TTTTT % % E X X P P O O R R T % % EEE X PPPP O O RRRR T % % E X X P O O R R T % % EEEEE X X P OOO R R T % % % % MagickCore Methods to Export Quantum Pixels % % % % Software Design % % Cristy % % October 1998 % % % % % % Copyright 1999-2020 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/cache.h" #include "MagickCore/constitute.h" #include "MagickCore/delegate.h" #include "MagickCore/geometry.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/statistic.h" #include "MagickCore/stream.h" #include "MagickCore/string_.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + E x p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ExportQuantumPixels() transfers one or more pixel components from the image % pixel cache to a user supplied buffer. The pixels are returned in network % byte order. MagickTrue is returned if the pixels are successfully % transferred, otherwise MagickFalse. % % The format of the ExportQuantumPixels method is: % % size_t ExportQuantumPixels(const Image *image,CacheView *image_view, % QuantumInfo *quantum_info,const QuantumType quantum_type, % unsigned char *magick_restrict pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (RGB, RGBA, % etc). % % o pixels: The components are transferred to this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline unsigned char *PopDoublePixel(QuantumInfo *quantum_info, const double pixel,unsigned char *magick_restrict pixels) { double *p; unsigned char quantum[8]; (void) memset(quantum,0,sizeof(quantum)); p=(double *) quantum; *p=(double) (pixel*quantum_info->state.inverse_scale+quantum_info->minimum); if (quantum_info->endian == LSBEndian) { *pixels++=quantum[0]; *pixels++=quantum[1]; *pixels++=quantum[2]; *pixels++=quantum[3]; *pixels++=quantum[4]; *pixels++=quantum[5]; *pixels++=quantum[6]; *pixels++=quantum[7]; return(pixels); } *pixels++=quantum[7]; *pixels++=quantum[6]; *pixels++=quantum[5]; *pixels++=quantum[4]; *pixels++=quantum[3]; *pixels++=quantum[2]; *pixels++=quantum[1]; *pixels++=quantum[0]; return(pixels); } static inline unsigned char *PopFloatPixel(QuantumInfo *quantum_info, const float pixel,unsigned char *magick_restrict pixels) { float *p; unsigned char quantum[4]; (void) memset(quantum,0,sizeof(quantum)); p=(float *) quantum; *p=(float) ((double) pixel*quantum_info->state.inverse_scale+ quantum_info->minimum); if (quantum_info->endian == LSBEndian) { *pixels++=quantum[0]; *pixels++=quantum[1]; *pixels++=quantum[2]; *pixels++=quantum[3]; return(pixels); } *pixels++=quantum[3]; *pixels++=quantum[2]; *pixels++=quantum[1]; *pixels++=quantum[0]; return(pixels); } static inline unsigned char *PopQuantumPixel(QuantumInfo *quantum_info, const QuantumAny pixel,unsigned char *magick_restrict pixels) { register ssize_t i; size_t quantum_bits; if (quantum_info->state.bits == 0UL) quantum_info->state.bits=8U; for (i=(ssize_t) quantum_info->depth; i > 0L; ) { quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; i-=(ssize_t) quantum_bits; if (i < 0) i=0; if (quantum_info->state.bits == 8UL) *pixels='\0'; quantum_info->state.bits-=quantum_bits; *pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) << quantum_info->state.bits); if (quantum_info->state.bits == 0UL) { pixels++; quantum_info->state.bits=8UL; } } return(pixels); } static inline unsigned char *PopQuantumLongPixel(QuantumInfo *quantum_info, const size_t pixel,unsigned char *magick_restrict pixels) { register ssize_t i; size_t quantum_bits; if (quantum_info->state.bits == 0U) quantum_info->state.bits=32UL; for (i=(ssize_t) quantum_info->depth; i > 0; ) { quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; quantum_info->state.pixel|=(((pixel >> (quantum_info->depth-i)) & quantum_info->state.mask[quantum_bits]) << (32U- quantum_info->state.bits)); i-=(ssize_t) quantum_bits; quantum_info->state.bits-=quantum_bits; if (quantum_info->state.bits == 0U) { pixels=PopLongPixel(quantum_info->endian,quantum_info->state.pixel, pixels); quantum_info->state.pixel=0U; quantum_info->state.bits=32U; } } return(pixels); } static void ExportAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); (void) exception; switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelAlpha(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelAlpha(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportBGRQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; ssize_t bit; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); (void) exception; switch (quantum_info->depth) { case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ( ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 | ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 | ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 12: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { switch (x % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); switch ((x+1) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); q+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { switch ((x+bit) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); q+=quantum_info->pad; } if (bit != 0) p+=GetPixelChannels(image); break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportBGRAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelAlpha(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=0; break; } } n++; } p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); float_pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportBGROQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelOpacity(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelOpacity(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=0; break; } } n++; } p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); float_pixel=(float) GetPixelOpacity(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelOpacity(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelOpacity(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelOpacity(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportBlackQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportBlueQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportCbYCrYQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { Quantum cbcr[4]; register ssize_t i, x; register unsigned int pixel; size_t quantum; ssize_t n; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); n=0; quantum=0; switch (quantum_info->depth) { case 10: { if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { quantum=GetPixelRed(image,p); break; } case 1: { quantum=GetPixelGreen(image,p); break; } case 2: { quantum=GetPixelBlue(image,p); break; } } cbcr[i]=(Quantum) quantum; n++; } pixel=(unsigned int) ((size_t) (cbcr[1]) << 22 | (size_t) (cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); pixel=(unsigned int) ((size_t) (cbcr[3]) << 22 | (size_t) (cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } break; } default: { QuantumAny range; for (x=0; x < (ssize_t) number_pixels; x+=2) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { quantum=GetPixelRed(image,p); break; } case 1: { quantum=GetPixelGreen(image,p); break; } case 2: { quantum=GetPixelBlue(image,p); break; } } cbcr[i]=(Quantum) quantum; n++; } range=GetQuantumRange(quantum_info->depth); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[1],range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[0],range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[2],range),q); p+=GetPixelChannels(image); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[3],range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[0],range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(cbcr[2],range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportCMYKQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { QuantumAny range; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportCMYKAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q); float_pixel=(float) (GetPixelAlpha(image,p)); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q); pixel=(double) (GetPixelAlpha(image,p)); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { QuantumAny range; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportCMYKOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { register ssize_t x; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlack(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelOpacity(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlack(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlack(image,p),q); float_pixel=(float) (GetPixelOpacity(image,p)); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlack(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelOpacity(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlack(image,p),q); pixel=(double) (GetPixelOpacity(image,p)); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { QuantumAny range; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlack(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelOpacity(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportGrayQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 1: { register double threshold; register unsigned char black, white; ssize_t bit; black=0x00; white=0x01; if (quantum_info->min_is_white != MagickFalse) { black=0x01; white=0x00; } threshold=QuantumRange/2.0; for (x=((ssize_t) number_pixels-7); x > 0; x-=8) { *q='\0'; *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 7; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 6; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 5; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 4; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 3; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 2; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 1; p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) < threshold ? black : white) << 0; p+=GetPixelChannels(image); q++; } if ((number_pixels % 8) != 0) { *q='\0'; for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) { *q|=(GetPixelLuma(image,p) < threshold ? black : white) << bit; p+=GetPixelChannels(image); } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) { pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); *q=(((pixel >> 4) & 0xf) << 4); p+=GetPixelChannels(image); pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); *q|=pixel >> 4; p+=GetPixelChannels(image); q++; } if ((number_pixels % 2) != 0) { pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); *q=(((pixel >> 4) & 0xf) << 4); p+=GetPixelChannels(image); q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register unsigned int pixel; for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { pixel=(unsigned int) (ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p+2*GetPixelChannels(image))),range) << 22 | ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p+ GetPixelChannels(image))),range) << 12 | ScaleQuantumToAny( ClampToQuantum(GetPixelLuma(image,p)),range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); p+=3*GetPixelChannels(image); q+=quantum_info->pad; } if (x < (ssize_t) number_pixels) { pixel=0U; if (x++ < (ssize_t) (number_pixels-1)) pixel|=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p+ GetPixelChannels(image))),range) << 12; if (x++ < (ssize_t) number_pixels) pixel|=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p)), range) << 2; q=PopLongPixel(quantum_info->endian,pixel,q); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 12: { register unsigned short pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p))); q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel >> 4), q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelLuma(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p))); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; float_pixel=(float) GetPixelLuma(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(ClampToQuantum(GetPixelLuma(image,p))); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; pixel=GetPixelLuma(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportGrayAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 1: { register double threshold; register unsigned char black, pixel, white; ssize_t bit; black=0x00; white=0x01; if (quantum_info->min_is_white != MagickFalse) { black=0x01; white=0x00; } threshold=QuantumRange/2.0; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { *q='\0'; *q|=(GetPixelLuma(image,p) > threshold ? black : white) << 7; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6); p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) > threshold ? black : white) << 5; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4); p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) > threshold ? black : white) << 3; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2); p+=GetPixelChannels(image); *q|=(GetPixelLuma(image,p) > threshold ? black : white) << 1; pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0); p+=GetPixelChannels(image); q++; } if ((number_pixels % 4) != 0) { *q='\0'; for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2) { *q|=(GetPixelLuma(image,p) > threshold ? black : white) << (7-bit); pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ? 0x00 : 0x01); *q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char) (7-bit-1)); p+=GetPixelChannels(image); } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels ; x++) { pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); *q=(((pixel >> 4) & 0xf) << 4); pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5); *q|=pixel & 0xf; p+=GetPixelChannels(image); q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(ClampToQuantum(GetPixelLuma(image,p))); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelLuma(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(ClampToQuantum(GetPixelLuma(image,p))); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; float_pixel=(float) GetPixelLuma(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); float_pixel=(float) (GetPixelAlpha(image,p)); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(ClampToQuantum(GetPixelLuma(image,p))); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; pixel=GetPixelLuma(image,p); q=PopDoublePixel(quantum_info,pixel,q); pixel=(double) (GetPixelAlpha(image,p)); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportGreenQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportIndexQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { register ssize_t x; ssize_t bit; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-7); x > 0; x-=8) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0x01) << 7); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 6); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 5); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 4); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 3); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 2); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 1); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 0); p+=GetPixelChannels(image); q++; } if ((number_pixels % 8) != 0) { *q='\0'; for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) { pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << (unsigned char) bit); p+=GetPixelChannels(image); } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0xf) << 0); p+=GetPixelChannels(image); q++; } if ((number_pixels % 2) != 0) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); p+=GetPixelChannels(image); q++; } break; } case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(quantum_info->endian,SinglePrecisionToHalf( QuantumScale*GetPixelIndex(image,p)),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(quantum_info->endian,(unsigned short) GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopLongPixel(quantum_info->endian,(unsigned int) GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,GetPixelIndex(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportIndexAlphaQuantum(const Image *image, QuantumInfo *quantum_info,const MagickSizeType number_pixels, const Quantum *magick_restrict p,unsigned char *magick_restrict q, ExceptionInfo *exception) { register ssize_t x; ssize_t bit; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0x01) << 7); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 6); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 5); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 4); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 3); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 2); p+=GetPixelChannels(image); pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << 1); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << 0); p+=GetPixelChannels(image); q++; } if ((number_pixels % 4) != 0) { *q='\0'; for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { pixel=(unsigned char) GetPixelIndex(image,p); *q|=((pixel & 0x01) << (unsigned char) (bit+4)); pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum) TransparentAlpha ? 1 : 0); *q|=((pixel & 0x01) << (unsigned char) (bit+4-1)); p+=GetPixelChannels(image); } q++; } break; } case 4: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels ; x++) { pixel=(unsigned char) GetPixelIndex(image,p); *q=((pixel & 0xf) << 4); pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5); *q|=((pixel & 0xf) << 0); p+=GetPixelChannels(image); q++; } break; } case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(quantum_info->endian,(unsigned short) GetPixelIndex(image,p),q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopShortPixel(quantum_info->endian,(unsigned short) GetPixelIndex(image,p),q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelIndex(image,p),q); float_pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { q=PopLongPixel(quantum_info->endian,(unsigned int) GetPixelIndex(image,p),q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { double pixel; q=PopDoublePixel(quantum_info,(double) GetPixelIndex(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { QuantumAny range; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,GetPixelIndex(image,p),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportOpacityQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelOpacity(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelOpacity(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelOpacity(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelOpacity(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny( GetPixelOpacity(image,p),range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportRedQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportRGBQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; ssize_t bit; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q); q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ( ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 | ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 | ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 12: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { switch (x % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); switch ((x+1) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); q+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { switch ((x+bit) % 3) { default: case 0: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p), range); break; } case 1: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); break; } case 2: { pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p), range); p+=GetPixelChannels(image); break; } } q=PopShortPixel(quantum_info->endian,(unsigned short) (pixel << 4), q); q+=quantum_info->pad; } if (bit != 0) p+=GetPixelChannels(image); break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportRGBAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelAlpha(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelAlpha(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=0; break; } } n++; } p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelAlpha(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); float_pixel=(float) GetPixelAlpha(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelAlpha(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelAlpha(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelAlpha(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } static void ExportRGBOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const Quantum *magick_restrict p, unsigned char *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { register unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToChar(GetPixelRed(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelGreen(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelBlue(image,p)); q=PopCharPixel(pixel,q); pixel=ScaleQuantumToChar(GetPixelOpacity(image,p)); q=PopCharPixel(pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 10: { register unsigned int pixel; range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; pixel=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (i) { case 0: quantum=GetPixelRed(image,p); break; case 1: quantum=GetPixelGreen(image,p); break; case 2: quantum=GetPixelBlue(image,p); break; case 3: quantum=GetPixelOpacity(image,p); break; } switch (n % 3) { case 0: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 22); break; } case 1: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 12); break; } case 2: { pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, range) << 2); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=0; break; } } n++; } p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } if (quantum_info->quantum == 32UL) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumLongPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p), range); q=PopQuantumLongPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); pixel=(unsigned int) ScaleQuantumToAny(GetPixelOpacity(image,p),range); q=PopQuantumPixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 16: { register unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { pixel=SinglePrecisionToHalf(QuantumScale*GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=SinglePrecisionToHalf(QuantumScale*GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToShort(GetPixelRed(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelGreen(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelBlue(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToShort(GetPixelOpacity(image,p)); q=PopShortPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 32: { register unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { float float_pixel; q=PopFloatPixel(quantum_info,(float) GetPixelRed(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelGreen(image,p),q); q=PopFloatPixel(quantum_info,(float) GetPixelBlue(image,p),q); float_pixel=(float) GetPixelOpacity(image,p); q=PopFloatPixel(quantum_info,float_pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } for (x=0; x < (ssize_t) number_pixels; x++) { pixel=ScaleQuantumToLong(GetPixelRed(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelGreen(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelBlue(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); pixel=ScaleQuantumToLong(GetPixelOpacity(image,p)); q=PopLongPixel(quantum_info->endian,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { q=PopDoublePixel(quantum_info,(double) GetPixelRed(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelGreen(image,p),q); q=PopDoublePixel(quantum_info,(double) GetPixelBlue(image,p),q); pixel=(double) GetPixelOpacity(image,p); q=PopDoublePixel(quantum_info,pixel,q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelRed(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelGreen(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelBlue(image,p), range),q); q=PopQuantumPixel(quantum_info,ScaleQuantumToAny(GetPixelOpacity(image,p), range),q); p+=GetPixelChannels(image); q+=quantum_info->pad; } break; } } } MagickExport size_t ExportQuantumPixels(const Image *image, CacheView *image_view,QuantumInfo *quantum_info, const QuantumType quantum_type,unsigned char *magick_restrict pixels, ExceptionInfo *exception) { MagickSizeType number_pixels; register const Quantum *magick_restrict p; register ssize_t x; register unsigned char *magick_restrict q; size_t extent; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickCoreSignature); if (pixels == (unsigned char *) NULL) pixels=(unsigned char *) GetQuantumPixels(quantum_info); if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); p=GetVirtualPixelQueue(image); } else { number_pixels=GetCacheViewExtent(image_view); p=GetCacheViewVirtualPixelQueue(image_view); } if (quantum_info->alpha_type == AssociatedQuantumAlpha) { double Sa; register Quantum *magick_restrict q; /* Associate alpha. */ if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); else q=GetAuthenticPixelQueue(image); for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; Sa=QuantumScale*GetPixelAlpha(image,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(Sa*q[i]); } q+=GetPixelChannels(image); } } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *magick_restrict q; if (image_view != (CacheView *) NULL) q=GetAuthenticPixelQueue(image); else q=GetAuthenticPixelQueue(image); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=GetPixelChannels(image); } } q=pixels; ResetQuantumState(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); switch (quantum_type) { case AlphaQuantum: { ExportAlphaQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BGRQuantum: { ExportBGRQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BGRAQuantum: { ExportBGRAQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BGROQuantum: { ExportBGROQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BlackQuantum: { ExportBlackQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BlueQuantum: case YellowQuantum: { ExportBlueQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKQuantum: { ExportCMYKQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKAQuantum: { ExportCMYKAQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKOQuantum: { ExportCMYKOQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CbYCrYQuantum: { ExportCbYCrYQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case GrayQuantum: { ExportGrayQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case GrayAlphaQuantum: { ExportGrayAlphaQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case GreenQuantum: case MagentaQuantum: { ExportGreenQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case IndexQuantum: { ExportIndexQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case IndexAlphaQuantum: { ExportIndexAlphaQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case RedQuantum: case CyanQuantum: { ExportRedQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case OpacityQuantum: { ExportOpacityQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case RGBQuantum: case CbYCrQuantum: { ExportRGBQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case RGBAQuantum: case CbYCrAQuantum: { ExportRGBAQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case RGBOQuantum: { ExportRGBOQuantum(image,quantum_info,number_pixels,p,q,exception); break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *magick_restrict q; if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); else q=GetAuthenticPixelQueue(image); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=GetPixelChannels(image); } } return(extent); }
Close