Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Apache
: 172.26.7.228 | : 3.145.42.140
Cant Read [ /etc/named.conf ]
5.6.40-24+ubuntu18.04.1+deb.sury.org+1
www-data
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
HASH IDENTIFIER
README
+ Create Folder
+ Create File
/
usr /
src /
linux-aws-headers-4.15.0-1021 /
kernel /
rcu /
[ HOME SHELL ]
Name
Size
Permission
Action
Kconfig
8.34
KB
-rw-r--r--
Kconfig.debug
2.2
KB
-rw-r--r--
Makefile
516
B
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : Kconfig
# # RCU-related configuration options # menu "RCU Subsystem" config TREE_RCU bool default y if !PREEMPT && SMP help This option selects the RCU implementation that is designed for very large SMP system with hundreds or thousands of CPUs. It also scales down nicely to smaller systems. config PREEMPT_RCU bool default y if PREEMPT help This option selects the RCU implementation that is designed for very large SMP systems with hundreds or thousands of CPUs, but for which real-time response is also required. It also scales down nicely to smaller systems. Select this option if you are unsure. config TINY_RCU bool default y if !PREEMPT && !SMP help This option selects the RCU implementation that is designed for UP systems from which real-time response is not required. This option greatly reduces the memory footprint of RCU. config RCU_EXPERT bool "Make expert-level adjustments to RCU configuration" default n help This option needs to be enabled if you wish to make expert-level adjustments to RCU configuration. By default, no such adjustments can be made, which has the often-beneficial side-effect of preventing "make oldconfig" from asking you all sorts of detailed questions about how you would like numerous obscure RCU options to be set up. Say Y if you need to make expert-level adjustments to RCU. Say N if you are unsure. config SRCU bool help This option selects the sleepable version of RCU. This version permits arbitrary sleeping or blocking within RCU read-side critical sections. config TINY_SRCU bool default y if SRCU && TINY_RCU help This option selects the single-CPU non-preemptible version of SRCU. config TREE_SRCU bool default y if SRCU && !TINY_RCU help This option selects the full-fledged version of SRCU. config TASKS_RCU def_bool PREEMPT select SRCU help This option enables a task-based RCU implementation that uses only voluntary context switch (not preemption!), idle, and user-mode execution as quiescent states. config RCU_STALL_COMMON def_bool ( TREE_RCU || PREEMPT_RCU ) help This option enables RCU CPU stall code that is common between the TINY and TREE variants of RCU. The purpose is to allow the tiny variants to disable RCU CPU stall warnings, while making these warnings mandatory for the tree variants. config RCU_NEED_SEGCBLIST def_bool ( TREE_RCU || PREEMPT_RCU || TREE_SRCU ) config CONTEXT_TRACKING bool config CONTEXT_TRACKING_FORCE bool "Force context tracking" depends on CONTEXT_TRACKING default y if !NO_HZ_FULL help The major pre-requirement for full dynticks to work is to support the context tracking subsystem. But there are also other dependencies to provide in order to make the full dynticks working. This option stands for testing when an arch implements the context tracking backend but doesn't yet fullfill all the requirements to make the full dynticks feature working. Without the full dynticks, there is no way to test the support for context tracking and the subsystems that rely on it: RCU userspace extended quiescent state and tickless cputime accounting. This option copes with the absence of the full dynticks subsystem by forcing the context tracking on all CPUs in the system. Say Y only if you're working on the development of an architecture backend for the context tracking. Say N otherwise, this option brings an overhead that you don't want in production. config RCU_FANOUT int "Tree-based hierarchical RCU fanout value" range 2 64 if 64BIT range 2 32 if !64BIT depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT default 64 if 64BIT default 32 if !64BIT help This option controls the fanout of hierarchical implementations of RCU, allowing RCU to work efficiently on machines with large numbers of CPUs. This value must be at least the fourth root of NR_CPUS, which allows NR_CPUS to be insanely large. The default value of RCU_FANOUT should be used for production systems, but if you are stress-testing the RCU implementation itself, small RCU_FANOUT values allow you to test large-system code paths on small(er) systems. Select a specific number if testing RCU itself. Take the default if unsure. config RCU_FANOUT_LEAF int "Tree-based hierarchical RCU leaf-level fanout value" range 2 64 if 64BIT range 2 32 if !64BIT depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT default 16 help This option controls the leaf-level fanout of hierarchical implementations of RCU, and allows trading off cache misses against lock contention. Systems that synchronize their scheduling-clock interrupts for energy-efficiency reasons will want the default because the smaller leaf-level fanout keeps lock contention levels acceptably low. Very large systems (hundreds or thousands of CPUs) will instead want to set this value to the maximum value possible in order to reduce the number of cache misses incurred during RCU's grace-period initialization. These systems tend to run CPU-bound, and thus are not helped by synchronized interrupts, and thus tend to skew them, which reduces lock contention enough that large leaf-level fanouts work well. That said, setting leaf-level fanout to a large number will likely cause problematic lock contention on the leaf-level rcu_node structures unless you boot with the skew_tick kernel parameter. Select a specific number if testing RCU itself. Select the maximum permissible value for large systems, but please understand that you may also need to set the skew_tick kernel boot parameter to avoid contention on the rcu_node structure's locks. Take the default if unsure. config RCU_FAST_NO_HZ bool "Accelerate last non-dyntick-idle CPU's grace periods" depends on NO_HZ_COMMON && SMP && RCU_EXPERT default n help This option permits CPUs to enter dynticks-idle state even if they have RCU callbacks queued, and prevents RCU from waking these CPUs up more than roughly once every four jiffies (by default, you can adjust this using the rcutree.rcu_idle_gp_delay parameter), thus improving energy efficiency. On the other hand, this option increases the duration of RCU grace periods, for example, slowing down synchronize_rcu(). Say Y if energy efficiency is critically important, and you don't care about increased grace-period durations. Say N if you are unsure. config RCU_BOOST bool "Enable RCU priority boosting" depends on RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT default n help This option boosts the priority of preempted RCU readers that block the current preemptible RCU grace period for too long. This option also prevents heavy loads from blocking RCU callback invocation for all flavors of RCU. Say Y here if you are working with real-time apps or heavy loads Say N here if you are unsure. config RCU_BOOST_DELAY int "Milliseconds to delay boosting after RCU grace-period start" range 0 3000 depends on RCU_BOOST default 500 help This option specifies the time to wait after the beginning of a given grace period before priority-boosting preempted RCU readers blocking that grace period. Note that any RCU reader blocking an expedited RCU grace period is boosted immediately. Accept the default if unsure. config RCU_NOCB_CPU bool "Offload RCU callback processing from boot-selected CPUs" depends on TREE_RCU || PREEMPT_RCU depends on RCU_EXPERT || NO_HZ_FULL default n help Use this option to reduce OS jitter for aggressive HPC or real-time workloads. It can also be used to offload RCU callback invocation to energy-efficient CPUs in battery-powered asymmetric multiprocessors. This option offloads callback invocation from the set of CPUs specified at boot time by the rcu_nocbs parameter. For each such CPU, a kthread ("rcuox/N") will be created to invoke callbacks, where the "N" is the CPU being offloaded, and where the "x" is "b" for RCU-bh, "p" for RCU-preempt, and "s" for RCU-sched. Nothing prevents this kthread from running on the specified CPUs, but (1) the kthreads may be preempted between each callback, and (2) affinity or cgroups can be used to force the kthreads to run on whatever set of CPUs is desired. Say Y here if you want to help to debug reduced OS jitter. Say N here if you are unsure. endmenu # "RCU Subsystem"
Close