0xV3NOMx
Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64



Your IP : 18.117.7.235


Current Path : /var/www/html/dud/tcpdf/node-v14.17.6 2/src/
Upload File :
Current File : //var/www/html/dud/tcpdf/node-v14.17.6 2/src/node_crypto.cc

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.

#include "node_crypto.h"
#include "node_buffer.h"
#include "node_crypto_bio.h"
#include "node_crypto_common.h"
#include "node_crypto_clienthello-inl.h"
#include "node_crypto_groups.h"
#include "node_errors.h"
#include "node_mutex.h"
#include "node_process-inl.h"
#include "allocated_buffer-inl.h"
#include "tls_wrap.h"  // TLSWrap

#include "async_wrap-inl.h"
#include "base_object-inl.h"
#include "env-inl.h"
#include "memory_tracker-inl.h"
#include "string_bytes.h"
#include "threadpoolwork-inl.h"
#include "util-inl.h"
#include "v8.h"

#include <openssl/ec.h>
#include <openssl/ecdh.h>
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif  // !OPENSSL_NO_ENGINE
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/x509v3.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/pkcs12.h>

#include <cerrno>
#include <climits>  // INT_MAX
#include <cstring>

#include <algorithm>
#include <memory>
#include <utility>
#include <vector>

namespace node {
namespace crypto {

using node::THROW_ERR_TLS_INVALID_PROTOCOL_METHOD;

using v8::Array;
using v8::ArrayBuffer;
using v8::ArrayBufferView;
using v8::BackingStore;
using v8::Boolean;
using v8::ConstructorBehavior;
using v8::Context;
using v8::DontDelete;
using v8::Exception;
using v8::External;
using v8::False;
using v8::Function;
using v8::FunctionCallback;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Int32;
using v8::Integer;
using v8::Isolate;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::NewStringType;
using v8::Nothing;
using v8::Null;
using v8::Object;
using v8::PropertyAttribute;
using v8::ReadOnly;
using v8::SideEffectType;
using v8::Signature;
using v8::String;
using v8::Uint32;
using v8::Uint8Array;
using v8::Undefined;
using v8::Value;

#ifdef OPENSSL_NO_OCB
# define IS_OCB_MODE(mode) false
#else
# define IS_OCB_MODE(mode) ((mode) == EVP_CIPH_OCB_MODE)
#endif

static const char* const root_certs[] = {
#include "node_root_certs.h"  // NOLINT(build/include_order)
};

static const char system_cert_path[] = NODE_OPENSSL_SYSTEM_CERT_PATH;

static X509_STORE* root_cert_store;

static bool extra_root_certs_loaded = false;

// Just to generate static methods
template void SSLWrap<TLSWrap>::AddMethods(Environment* env,
                                           Local<FunctionTemplate> t);
template void SSLWrap<TLSWrap>::ConfigureSecureContext(SecureContext* sc);
template int SSLWrap<TLSWrap>::SetCACerts(SecureContext* sc);
template void SSLWrap<TLSWrap>::MemoryInfo(MemoryTracker* tracker) const;
template SSL_SESSION* SSLWrap<TLSWrap>::GetSessionCallback(
    SSL* s,
    const unsigned char* key,
    int len,
    int* copy);
template int SSLWrap<TLSWrap>::NewSessionCallback(SSL* s,
                                                  SSL_SESSION* sess);
template void SSLWrap<TLSWrap>::KeylogCallback(const SSL* s,
                                               const char* line);
template void SSLWrap<TLSWrap>::OnClientHello(
    void* arg,
    const ClientHelloParser::ClientHello& hello);
template int SSLWrap<TLSWrap>::TLSExtStatusCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::DestroySSL();
template int SSLWrap<TLSWrap>::SSLCertCallback(SSL* s, void* arg);
template void SSLWrap<TLSWrap>::WaitForCertCb(CertCb cb, void* arg);
template int SSLWrap<TLSWrap>::SelectALPNCallback(
    SSL* s,
    const unsigned char** out,
    unsigned char* outlen,
    const unsigned char* in,
    unsigned int inlen,
    void* arg);

template <typename T>
void Decode(const FunctionCallbackInfo<Value>& args,
            void (*callback)(T*, const FunctionCallbackInfo<Value>&,
                             const char*, size_t)) {
  T* ctx;
  ASSIGN_OR_RETURN_UNWRAP(&ctx, args.Holder());

  if (args[0]->IsString()) {
    StringBytes::InlineDecoder decoder;
    Environment* env = Environment::GetCurrent(args);
    enum encoding enc = ParseEncoding(env->isolate(), args[1], UTF8);
    if (decoder.Decode(env, args[0].As<String>(), enc).IsNothing())
      return;
    callback(ctx, args, decoder.out(), decoder.size());
  } else {
    ArrayBufferViewContents<char> buf(args[0]);
    callback(ctx, args, buf.data(), buf.length());
  }
}

static int PasswordCallback(char* buf, int size, int rwflag, void* u) {
  const char* passphrase = static_cast<char*>(u);
  if (passphrase != nullptr) {
    size_t buflen = static_cast<size_t>(size);
    size_t len = strlen(passphrase);
    if (buflen < len)
      return -1;
    memcpy(buf, passphrase, len);
    return len;
  }

  return -1;
}

// Loads OpenSSL engine by engine id and returns it. The loaded engine
// gets a reference so remember the corresponding call to ENGINE_free.
// In case of error the appropriate js exception is scheduled
// and nullptr is returned.
#ifndef OPENSSL_NO_ENGINE
static ENGINE* LoadEngineById(const char* engine_id, char (*errmsg)[1024]) {
  MarkPopErrorOnReturn mark_pop_error_on_return;

  ENGINE* engine = ENGINE_by_id(engine_id);

  if (engine == nullptr) {
    // Engine not found, try loading dynamically.
    engine = ENGINE_by_id("dynamic");
    if (engine != nullptr) {
      if (!ENGINE_ctrl_cmd_string(engine, "SO_PATH", engine_id, 0) ||
          !ENGINE_ctrl_cmd_string(engine, "LOAD", nullptr, 0)) {
        ENGINE_free(engine);
        engine = nullptr;
      }
    }
  }

  if (engine == nullptr) {
    int err = ERR_get_error();
    if (err != 0) {
      ERR_error_string_n(err, *errmsg, sizeof(*errmsg));
    } else {
      snprintf(*errmsg, sizeof(*errmsg),
               "Engine \"%s\" was not found", engine_id);
    }
  }

  return engine;
}
#endif  // !OPENSSL_NO_ENGINE

// This callback is used to avoid the default passphrase callback in OpenSSL
// which will typically prompt for the passphrase. The prompting is designed
// for the OpenSSL CLI, but works poorly for Node.js because it involves
// synchronous interaction with the controlling terminal, something we never
// want, and use this function to avoid it.
static int NoPasswordCallback(char* buf, int size, int rwflag, void* u) {
  return 0;
}


// namespace node::crypto::error
namespace error {
Maybe<bool> Decorate(Environment* env, Local<Object> obj,
              unsigned long err) {  // NOLINT(runtime/int)
  if (err == 0) return Just(true);  // No decoration necessary.

  const char* ls = ERR_lib_error_string(err);
  const char* fs = ERR_func_error_string(err);
  const char* rs = ERR_reason_error_string(err);

  Isolate* isolate = env->isolate();
  Local<Context> context = isolate->GetCurrentContext();

  if (ls != nullptr) {
    if (obj->Set(context, env->library_string(),
                 OneByteString(isolate, ls)).IsNothing()) {
      return Nothing<bool>();
    }
  }
  if (fs != nullptr) {
    if (obj->Set(context, env->function_string(),
                 OneByteString(isolate, fs)).IsNothing()) {
      return Nothing<bool>();
    }
  }
  if (rs != nullptr) {
    if (obj->Set(context, env->reason_string(),
                 OneByteString(isolate, rs)).IsNothing()) {
      return Nothing<bool>();
    }

    // SSL has no API to recover the error name from the number, so we
    // transform reason strings like "this error" to "ERR_SSL_THIS_ERROR",
    // which ends up being close to the original error macro name.
    std::string reason(rs);

    for (auto& c : reason) {
      if (c == ' ')
        c = '_';
      else
        c = ToUpper(c);
    }

#define OSSL_ERROR_CODES_MAP(V)                                               \
    V(SYS)                                                                    \
    V(BN)                                                                     \
    V(RSA)                                                                    \
    V(DH)                                                                     \
    V(EVP)                                                                    \
    V(BUF)                                                                    \
    V(OBJ)                                                                    \
    V(PEM)                                                                    \
    V(DSA)                                                                    \
    V(X509)                                                                   \
    V(ASN1)                                                                   \
    V(CONF)                                                                   \
    V(CRYPTO)                                                                 \
    V(EC)                                                                     \
    V(SSL)                                                                    \
    V(BIO)                                                                    \
    V(PKCS7)                                                                  \
    V(X509V3)                                                                 \
    V(PKCS12)                                                                 \
    V(RAND)                                                                   \
    V(DSO)                                                                    \
    V(ENGINE)                                                                 \
    V(OCSP)                                                                   \
    V(UI)                                                                     \
    V(COMP)                                                                   \
    V(ECDSA)                                                                  \
    V(ECDH)                                                                   \
    V(OSSL_STORE)                                                             \
    V(FIPS)                                                                   \
    V(CMS)                                                                    \
    V(TS)                                                                     \
    V(HMAC)                                                                   \
    V(CT)                                                                     \
    V(ASYNC)                                                                  \
    V(KDF)                                                                    \
    V(SM2)                                                                    \
    V(USER)                                                                   \

#define V(name) case ERR_LIB_##name: lib = #name "_"; break;
    const char* lib = "";
    const char* prefix = "OSSL_";
    switch (ERR_GET_LIB(err)) { OSSL_ERROR_CODES_MAP(V) }
#undef V
#undef OSSL_ERROR_CODES_MAP
    // Don't generate codes like "ERR_OSSL_SSL_".
    if (lib && strcmp(lib, "SSL_") == 0)
      prefix = "";

    // All OpenSSL reason strings fit in a single 80-column macro definition,
    // all prefix lengths are <= 10, and ERR_OSSL_ is 9, so 128 is more than
    // sufficient.
    char code[128];
    snprintf(code, sizeof(code), "ERR_%s%s%s", prefix, lib, reason.c_str());

    if (obj->Set(env->isolate()->GetCurrentContext(),
             env->code_string(),
             OneByteString(env->isolate(), code)).IsNothing())
      return Nothing<bool>();
  }

  return Just(true);
}
}  // namespace error


struct CryptoErrorVector : public std::vector<std::string> {
  inline void Capture() {
    clear();
    while (auto err = ERR_get_error()) {
      char buf[256];
      ERR_error_string_n(err, buf, sizeof(buf));
      push_back(buf);
    }
    std::reverse(begin(), end());
  }

  inline MaybeLocal<Value> ToException(
      Environment* env,
      Local<String> exception_string = Local<String>()) const {
    if (exception_string.IsEmpty()) {
      CryptoErrorVector copy(*this);
      if (copy.empty()) copy.push_back("no error");  // But possibly a bug...
      // Use last element as the error message, everything else goes
      // into the .opensslErrorStack property on the exception object.
      auto exception_string =
          String::NewFromUtf8(env->isolate(), copy.back().data(),
                              NewStringType::kNormal, copy.back().size())
          .ToLocalChecked();
      copy.pop_back();
      return copy.ToException(env, exception_string);
    }

    Local<Value> exception_v = Exception::Error(exception_string);
    CHECK(!exception_v.IsEmpty());

    if (!empty()) {
      CHECK(exception_v->IsObject());
      Local<Object> exception = exception_v.As<Object>();
      Maybe<bool> ok = exception->Set(env->context(),
                     env->openssl_error_stack(),
                     ToV8Value(env->context(), *this).ToLocalChecked());
      if (ok.IsNothing())
        return MaybeLocal<Value>();
    }

    return exception_v;
  }
};


void ThrowCryptoError(Environment* env,
                      unsigned long err,  // NOLINT(runtime/int)
                      // Default, only used if there is no SSL `err` which can
                      // be used to create a long-style message string.
                      const char* message) {
  char message_buffer[128] = {0};
  if (err != 0 || message == nullptr) {
    ERR_error_string_n(err, message_buffer, sizeof(message_buffer));
    message = message_buffer;
  }
  HandleScope scope(env->isolate());
  Local<String> exception_string =
      String::NewFromUtf8(env->isolate(), message).ToLocalChecked();
  CryptoErrorVector errors;
  errors.Capture();
  Local<Value> exception;
  if (!errors.ToException(env, exception_string).ToLocal(&exception))
    return;
  Local<Object> obj;
  if (!exception->ToObject(env->context()).ToLocal(&obj))
    return;
  if (error::Decorate(env, obj, err).IsNothing())
    return;
  env->isolate()->ThrowException(exception);
}


// Ensure that OpenSSL has enough entropy (at least 256 bits) for its PRNG.
// The entropy pool starts out empty and needs to fill up before the PRNG
// can be used securely.  Once the pool is filled, it never dries up again;
// its contents is stirred and reused when necessary.
//
// OpenSSL normally fills the pool automatically but not when someone starts
// generating random numbers before the pool is full: in that case OpenSSL
// keeps lowering the entropy estimate to thwart attackers trying to guess
// the initial state of the PRNG.
//
// When that happens, we will have to wait until enough entropy is available.
// That should normally never take longer than a few milliseconds.
//
// OpenSSL draws from /dev/random and /dev/urandom.  While /dev/random may
// block pending "true" randomness, /dev/urandom is a CSPRNG that doesn't
// block under normal circumstances.
//
// The only time when /dev/urandom may conceivably block is right after boot,
// when the whole system is still low on entropy.  That's not something we can
// do anything about.
inline void CheckEntropy() {
  for (;;) {
    int status = RAND_status();
    CHECK_GE(status, 0);  // Cannot fail.
    if (status != 0)
      break;

    // Give up, RAND_poll() not supported.
    if (RAND_poll() == 0)
      break;
  }
}


bool EntropySource(unsigned char* buffer, size_t length) {
  // Ensure that OpenSSL's PRNG is properly seeded.
  CheckEntropy();
  // RAND_bytes() can return 0 to indicate that the entropy data is not truly
  // random. That's okay, it's still better than V8's stock source of entropy,
  // which is /dev/urandom on UNIX platforms and the current time on Windows.
  return RAND_bytes(buffer, length) != -1;
}

void SecureContext::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
  t->InstanceTemplate()->SetInternalFieldCount(
      SecureContext::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));
  Local<String> secureContextString =
      FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext");
  t->SetClassName(secureContextString);

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethod(t, "setKey", SetKey);
#ifndef OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setEngineKey", SetEngineKey);
#endif  // !OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setCert", SetCert);
  env->SetProtoMethod(t, "addCACert", AddCACert);
  env->SetProtoMethod(t, "addCRL", AddCRL);
  env->SetProtoMethod(t, "addRootCerts", AddRootCerts);
  env->SetProtoMethod(t, "setCipherSuites", SetCipherSuites);
  env->SetProtoMethod(t, "setCiphers", SetCiphers);
  env->SetProtoMethod(t, "setSigalgs", SetSigalgs);
  env->SetProtoMethod(t, "setECDHCurve", SetECDHCurve);
  env->SetProtoMethod(t, "setDHParam", SetDHParam);
  env->SetProtoMethod(t, "setMaxProto", SetMaxProto);
  env->SetProtoMethod(t, "setMinProto", SetMinProto);
  env->SetProtoMethod(t, "getMaxProto", GetMaxProto);
  env->SetProtoMethod(t, "getMinProto", GetMinProto);
  env->SetProtoMethod(t, "setOptions", SetOptions);
  env->SetProtoMethod(t, "setSessionIdContext", SetSessionIdContext);
  env->SetProtoMethod(t, "setSessionTimeout", SetSessionTimeout);
  env->SetProtoMethod(t, "close", Close);
  env->SetProtoMethod(t, "loadPKCS12", LoadPKCS12);
#ifndef OPENSSL_NO_ENGINE
  env->SetProtoMethod(t, "setClientCertEngine", SetClientCertEngine);
#endif  // !OPENSSL_NO_ENGINE
  env->SetProtoMethodNoSideEffect(t, "getTicketKeys", GetTicketKeys);
  env->SetProtoMethod(t, "setTicketKeys", SetTicketKeys);
  env->SetProtoMethod(t, "setFreeListLength", SetFreeListLength);
  env->SetProtoMethod(t, "enableTicketKeyCallback", EnableTicketKeyCallback);
  env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate<true>);
  env->SetProtoMethodNoSideEffect(t, "getIssuer", GetCertificate<false>);

#define SET_INTEGER_CONSTANTS(name, value)                                     \
    t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), name),                        \
           Integer::NewFromUnsigned(env->isolate(), value));
  SET_INTEGER_CONSTANTS("kTicketKeyReturnIndex", kTicketKeyReturnIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyHMACIndex", kTicketKeyHMACIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyAESIndex", kTicketKeyAESIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyNameIndex", kTicketKeyNameIndex);
  SET_INTEGER_CONSTANTS("kTicketKeyIVIndex", kTicketKeyIVIndex);

#undef SET_INTEGER_CONSTANTS

  Local<FunctionTemplate> ctx_getter_templ =
      FunctionTemplate::New(env->isolate(),
                            CtxGetter,
                            Local<Value>(),
                            Signature::New(env->isolate(), t));


  t->PrototypeTemplate()->SetAccessorProperty(
      FIXED_ONE_BYTE_STRING(env->isolate(), "_external"),
      ctx_getter_templ,
      Local<FunctionTemplate>(),
      static_cast<PropertyAttribute>(ReadOnly | DontDelete));

  target->Set(env->context(), secureContextString,
              t->GetFunction(env->context()).ToLocalChecked()).Check();
  env->set_secure_context_constructor_template(t);
}

SecureContext::SecureContext(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap) {
  MakeWeak();
  env->isolate()->AdjustAmountOfExternalAllocatedMemory(kExternalSize);
}

inline void SecureContext::Reset() {
  if (ctx_ != nullptr) {
    env()->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize);
  }
  ctx_.reset();
  cert_.reset();
  issuer_.reset();
}

SecureContext::~SecureContext() {
  Reset();
}

void SecureContext::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new SecureContext(env, args.This());
}

// A maxVersion of 0 means "any", but OpenSSL may support TLS versions that
// Node.js doesn't, so pin the max to what we do support.
const int MAX_SUPPORTED_VERSION = TLS1_3_VERSION;

void SecureContext::Init(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  CHECK_EQ(args.Length(), 3);
  CHECK(args[1]->IsInt32());
  CHECK(args[2]->IsInt32());

  int min_version = args[1].As<Int32>()->Value();
  int max_version = args[2].As<Int32>()->Value();
  const SSL_METHOD* method = TLS_method();

  if (max_version == 0)
    max_version = MAX_SUPPORTED_VERSION;

  if (args[0]->IsString()) {
    const node::Utf8Value sslmethod(env->isolate(), args[0]);

    // Note that SSLv2 and SSLv3 are disallowed but SSLv23_method and friends
    // are still accepted.  They are OpenSSL's way of saying that all known
    // protocols below TLS 1.3 are supported unless explicitly disabled (which
    // we do below for SSLv2 and SSLv3.)
    if (sslmethod == "SSLv2_method" ||
        sslmethod == "SSLv2_server_method" ||
        sslmethod == "SSLv2_client_method") {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv2 methods disabled");
      return;
    } else if (sslmethod == "SSLv3_method" ||
               sslmethod == "SSLv3_server_method" ||
               sslmethod == "SSLv3_client_method") {
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, "SSLv3 methods disabled");
      return;
    } else if (sslmethod == "SSLv23_method") {
      max_version = TLS1_2_VERSION;
    } else if (sslmethod == "SSLv23_server_method") {
      max_version = TLS1_2_VERSION;
      method = TLS_server_method();
    } else if (sslmethod == "SSLv23_client_method") {
      max_version = TLS1_2_VERSION;
      method = TLS_client_method();
    } else if (sslmethod == "TLS_method") {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
    } else if (sslmethod == "TLS_server_method") {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
      method = TLS_server_method();
    } else if (sslmethod == "TLS_client_method") {
      min_version = 0;
      max_version = MAX_SUPPORTED_VERSION;
      method = TLS_client_method();
    } else if (sslmethod == "TLSv1_method") {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
    } else if (sslmethod == "TLSv1_server_method") {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
      method = TLS_server_method();
    } else if (sslmethod == "TLSv1_client_method") {
      min_version = TLS1_VERSION;
      max_version = TLS1_VERSION;
      method = TLS_client_method();
    } else if (sslmethod == "TLSv1_1_method") {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
    } else if (sslmethod == "TLSv1_1_server_method") {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
      method = TLS_server_method();
    } else if (sslmethod == "TLSv1_1_client_method") {
      min_version = TLS1_1_VERSION;
      max_version = TLS1_1_VERSION;
      method = TLS_client_method();
    } else if (sslmethod == "TLSv1_2_method") {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
    } else if (sslmethod == "TLSv1_2_server_method") {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
      method = TLS_server_method();
    } else if (sslmethod == "TLSv1_2_client_method") {
      min_version = TLS1_2_VERSION;
      max_version = TLS1_2_VERSION;
      method = TLS_client_method();
    } else {
      const std::string msg("Unknown method: ");
      THROW_ERR_TLS_INVALID_PROTOCOL_METHOD(env, (msg + * sslmethod).c_str());
      return;
    }
  }

  sc->ctx_.reset(SSL_CTX_new(method));
  SSL_CTX_set_app_data(sc->ctx_.get(), sc);

  // Disable SSLv2 in the case when method == TLS_method() and the
  // cipher list contains SSLv2 ciphers (not the default, should be rare.)
  // The bundled OpenSSL doesn't have SSLv2 support but the system OpenSSL may.
  // SSLv3 is disabled because it's susceptible to downgrade attacks (POODLE.)
  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv2);
  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_NO_SSLv3);

  // Enable automatic cert chaining. This is enabled by default in OpenSSL, but
  // disabled by default in BoringSSL. Enable it explicitly to make the
  // behavior match when Node is built with BoringSSL.
  SSL_CTX_clear_mode(sc->ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);

  // SSL session cache configuration
  SSL_CTX_set_session_cache_mode(sc->ctx_.get(),
                                 SSL_SESS_CACHE_CLIENT |
                                 SSL_SESS_CACHE_SERVER |
                                 SSL_SESS_CACHE_NO_INTERNAL |
                                 SSL_SESS_CACHE_NO_AUTO_CLEAR);

  SSL_CTX_set_min_proto_version(sc->ctx_.get(), min_version);
  SSL_CTX_set_max_proto_version(sc->ctx_.get(), max_version);

  // OpenSSL 1.1.0 changed the ticket key size, but the OpenSSL 1.0.x size was
  // exposed in the public API. To retain compatibility, install a callback
  // which restores the old algorithm.
  if (RAND_bytes(sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) <= 0 ||
      RAND_bytes(sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_)) <= 0 ||
      RAND_bytes(sc->ticket_key_aes_, sizeof(sc->ticket_key_aes_)) <= 0) {
    return env->ThrowError("Error generating ticket keys");
  }
  SSL_CTX_set_tlsext_ticket_key_cb(sc->ctx_.get(), TicketCompatibilityCallback);
}


// Takes a string or buffer and loads it into a BIO.
// Caller responsible for BIO_free_all-ing the returned object.
static BIOPointer LoadBIO(Environment* env, Local<Value> v) {
  HandleScope scope(env->isolate());

  if (v->IsString()) {
    const node::Utf8Value s(env->isolate(), v);
    return NodeBIO::NewFixed(*s, s.length());
  }

  if (v->IsArrayBufferView()) {
    ArrayBufferViewContents<char> buf(v.As<ArrayBufferView>());
    return NodeBIO::NewFixed(buf.data(), buf.length());
  }

  return nullptr;
}


void SecureContext::SetKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  unsigned int len = args.Length();
  if (len < 1) {
    return THROW_ERR_MISSING_ARGS(env, "Private key argument is mandatory");
  }

  if (len > 2) {
    return env->ThrowError("Only private key and pass phrase are expected");
  }

  if (len == 2) {
    if (args[1]->IsUndefined() || args[1]->IsNull())
      len = 1;
    else
      THROW_AND_RETURN_IF_NOT_STRING(env, args[1], "Pass phrase");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  node::Utf8Value passphrase(env->isolate(), args[1]);

  EVPKeyPointer key(
      PEM_read_bio_PrivateKey(bio.get(),
                              nullptr,
                              PasswordCallback,
                              *passphrase));

  if (!key) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "PEM_read_bio_PrivateKey");
  }

  int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get());

  if (!rv) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "SSL_CTX_use_PrivateKey");
  }
}

void SecureContext::SetSigalgs(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value sigalgs(env->isolate(), args[0]);

  int rv = SSL_CTX_set1_sigalgs_list(sc->ctx_.get(), *sigalgs);

  if (rv == 0) {
    return ThrowCryptoError(env, ERR_get_error());
  }
}

#ifndef OPENSSL_NO_ENGINE
// Helpers for the smart pointer.
void ENGINE_free_fn(ENGINE* engine) { ENGINE_free(engine); }

void ENGINE_finish_and_free_fn(ENGINE* engine) {
  ENGINE_finish(engine);
  ENGINE_free(engine);
}

void SecureContext::SetEngineKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 2);

  char errmsg[1024];
  const node::Utf8Value engine_id(env->isolate(), args[1]);
  std::unique_ptr<ENGINE, std::function<void(ENGINE*)>> e =
                         { LoadEngineById(*engine_id, &errmsg),
                           ENGINE_free_fn };
  if (e.get() == nullptr) {
    return env->ThrowError(errmsg);
  }

  if (!ENGINE_init(e.get())) {
    return env->ThrowError("ENGINE_init");
  }

  e.get_deleter() = ENGINE_finish_and_free_fn;

  const node::Utf8Value key_name(env->isolate(), args[0]);
  EVPKeyPointer key(ENGINE_load_private_key(e.get(), *key_name,
                                            nullptr, nullptr));

  if (!key) {
    return ThrowCryptoError(env, ERR_get_error(), "ENGINE_load_private_key");
  }

  int rv = SSL_CTX_use_PrivateKey(sc->ctx_.get(), key.get());

  if (rv == 0) {
    return ThrowCryptoError(env, ERR_get_error(), "SSL_CTX_use_PrivateKey");
  }

  sc->private_key_engine_ = std::move(e);
}
#endif  // !OPENSSL_NO_ENGINE

int SSL_CTX_use_certificate_chain(SSL_CTX* ctx,
                                  X509Pointer&& x,
                                  STACK_OF(X509)* extra_certs,
                                  X509Pointer* cert,
                                  X509Pointer* issuer_) {
  CHECK(!*issuer_);
  CHECK(!*cert);
  X509* issuer = nullptr;

  int ret = SSL_CTX_use_certificate(ctx, x.get());

  if (ret) {
    // If we could set up our certificate, now proceed to
    // the CA certificates.
    SSL_CTX_clear_extra_chain_certs(ctx);

    for (int i = 0; i < sk_X509_num(extra_certs); i++) {
      X509* ca = sk_X509_value(extra_certs, i);

      // NOTE: Increments reference count on `ca`
      if (!SSL_CTX_add1_chain_cert(ctx, ca)) {
        ret = 0;
        issuer = nullptr;
        break;
      }
      // Note that we must not free r if it was successfully
      // added to the chain (while we must free the main
      // certificate, since its reference count is increased
      // by SSL_CTX_use_certificate).

      // Find issuer
      if (issuer != nullptr || X509_check_issued(ca, x.get()) != X509_V_OK)
        continue;

      issuer = ca;
    }
  }

  // Try getting issuer from a cert store
  if (ret) {
    if (issuer == nullptr) {
      ret = SSL_CTX_get_issuer(ctx, x.get(), &issuer);
      ret = ret < 0 ? 0 : 1;
      // NOTE: get_cert_store doesn't increment reference count,
      // no need to free `store`
    } else {
      // Increment issuer reference count
      issuer = X509_dup(issuer);
      if (issuer == nullptr) {
        ret = 0;
      }
    }
  }

  issuer_->reset(issuer);

  if (ret && x != nullptr) {
    cert->reset(X509_dup(x.get()));
    if (!*cert)
      ret = 0;
  }
  return ret;
}


// Read a file that contains our certificate in "PEM" format,
// possibly followed by a sequence of CA certificates that should be
// sent to the peer in the Certificate message.
//
// Taken from OpenSSL - edited for style.
int SSL_CTX_use_certificate_chain(SSL_CTX* ctx,
                                  BIOPointer&& in,
                                  X509Pointer* cert,
                                  X509Pointer* issuer) {
  // Just to ensure that `ERR_peek_last_error` below will return only errors
  // that we are interested in
  ERR_clear_error();

  X509Pointer x(
      PEM_read_bio_X509_AUX(in.get(), nullptr, NoPasswordCallback, nullptr));

  if (!x)
    return 0;

  unsigned long err = 0;  // NOLINT(runtime/int)

  StackOfX509 extra_certs(sk_X509_new_null());
  if (!extra_certs)
    return 0;

  while (X509Pointer extra {PEM_read_bio_X509(in.get(),
                                    nullptr,
                                    NoPasswordCallback,
                                    nullptr)}) {
    if (sk_X509_push(extra_certs.get(), extra.get())) {
      extra.release();
      continue;
    }

    return 0;
  }

  // When the while loop ends, it's usually just EOF.
  err = ERR_peek_last_error();
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
    ERR_clear_error();
  } else {
    // some real error
    return 0;
  }

  return SSL_CTX_use_certificate_chain(ctx,
                                       std::move(x),
                                       extra_certs.get(),
                                       cert,
                                       issuer);
}


void SecureContext::SetCert(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "Certificate argument is mandatory");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  sc->cert_.reset();
  sc->issuer_.reset();

  int rv = SSL_CTX_use_certificate_chain(sc->ctx_.get(),
                                         std::move(bio),
                                         &sc->cert_,
                                         &sc->issuer_);

  if (!rv) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "SSL_CTX_use_certificate_chain");
  }
}


static X509_STORE* NewRootCertStore() {
  static std::vector<X509*> root_certs_vector;
  static Mutex root_certs_vector_mutex;
  Mutex::ScopedLock lock(root_certs_vector_mutex);

  if (root_certs_vector.empty()) {
    for (size_t i = 0; i < arraysize(root_certs); i++) {
      X509* x509 =
          PEM_read_bio_X509(NodeBIO::NewFixed(root_certs[i],
                                              strlen(root_certs[i])).get(),
                            nullptr,   // no re-use of X509 structure
                            NoPasswordCallback,
                            nullptr);  // no callback data

      // Parse errors from the built-in roots are fatal.
      CHECK_NOT_NULL(x509);

      root_certs_vector.push_back(x509);
    }
  }

  X509_STORE* store = X509_STORE_new();
  if (*system_cert_path != '\0') {
    X509_STORE_load_locations(store, system_cert_path, nullptr);
  }

  Mutex::ScopedLock cli_lock(node::per_process::cli_options_mutex);
  if (per_process::cli_options->ssl_openssl_cert_store) {
    X509_STORE_set_default_paths(store);
  } else {
    for (X509* cert : root_certs_vector) {
      X509_up_ref(cert);
      X509_STORE_add_cert(store, cert);
    }
  }

  return store;
}


void GetRootCertificates(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  Local<Value> result[arraysize(root_certs)];

  for (size_t i = 0; i < arraysize(root_certs); i++) {
    if (!String::NewFromOneByte(
            env->isolate(),
            reinterpret_cast<const uint8_t*>(root_certs[i]))
            .ToLocal(&result[i])) {
      return;
    }
  }

  args.GetReturnValue().Set(
      Array::New(env->isolate(), result, arraysize(root_certs)));
}


void SecureContext::AddCACert(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "CA certificate argument is mandatory");
  }

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());
  while (X509* x509 = PEM_read_bio_X509_AUX(
      bio.get(), nullptr, NoPasswordCallback, nullptr)) {
    if (cert_store == root_cert_store) {
      cert_store = NewRootCertStore();
      SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
    }
    X509_STORE_add_cert(cert_store, x509);
    SSL_CTX_add_client_CA(sc->ctx_.get(), x509);
    X509_free(x509);
  }
}


void SecureContext::AddCRL(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(env, "CRL argument is mandatory");
  }

  ClearErrorOnReturn clear_error_on_return;

  BIOPointer bio(LoadBIO(env, args[0]));
  if (!bio)
    return;

  DeleteFnPtr<X509_CRL, X509_CRL_free> crl(
      PEM_read_bio_X509_CRL(bio.get(), nullptr, NoPasswordCallback, nullptr));

  if (!crl)
    return env->ThrowError("Failed to parse CRL");

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());
  if (cert_store == root_cert_store) {
    cert_store = NewRootCertStore();
    SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
  }

  X509_STORE_add_crl(cert_store, crl.get());
  X509_STORE_set_flags(cert_store,
                       X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL);
}


static unsigned long AddCertsFromFile(  // NOLINT(runtime/int)
    X509_STORE* store,
    const char* file) {
  ERR_clear_error();
  MarkPopErrorOnReturn mark_pop_error_on_return;

  BIOPointer bio(BIO_new_file(file, "r"));
  if (!bio)
    return ERR_get_error();

  while (X509* x509 =
      PEM_read_bio_X509(bio.get(), nullptr, NoPasswordCallback, nullptr)) {
    X509_STORE_add_cert(store, x509);
    X509_free(x509);
  }

  unsigned long err = ERR_peek_error();  // NOLINT(runtime/int)
  // Ignore error if its EOF/no start line found.
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
    return 0;
  }

  return err;
}


void UseExtraCaCerts(const std::string& file) {
  ClearErrorOnReturn clear_error_on_return;

  if (root_cert_store == nullptr) {
    root_cert_store = NewRootCertStore();

    if (!file.empty()) {
      unsigned long err = AddCertsFromFile(  // NOLINT(runtime/int)
                                           root_cert_store,
                                           file.c_str());
      if (err) {
        fprintf(stderr,
                "Warning: Ignoring extra certs from `%s`, load failed: %s\n",
                file.c_str(),
                ERR_error_string(err, nullptr));
      } else {
        extra_root_certs_loaded = true;
      }
    }
  }
}


static void IsExtraRootCertsFileLoaded(
    const FunctionCallbackInfo<Value>& args) {
  return args.GetReturnValue().Set(extra_root_certs_loaded);
}


void SecureContext::AddRootCerts(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (root_cert_store == nullptr) {
    root_cert_store = NewRootCertStore();
  }

  // Increment reference count so global store is not deleted along with CTX.
  X509_STORE_up_ref(root_cert_store);
  SSL_CTX_set_cert_store(sc->ctx_.get(), root_cert_store);
}


void SecureContext::SetCipherSuites(const FunctionCallbackInfo<Value>& args) {
  // BoringSSL doesn't allow API config of TLS1.3 cipher suites.
#ifndef OPENSSL_IS_BORINGSSL
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value ciphers(args.GetIsolate(), args[0]);
  if (!SSL_CTX_set_ciphersuites(sc->ctx_.get(), *ciphers)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err, "Failed to set ciphers");
  }
#endif
}


void SecureContext::SetCiphers(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  const node::Utf8Value ciphers(args.GetIsolate(), args[0]);
  if (!SSL_CTX_set_cipher_list(sc->ctx_.get(), *ciphers)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)

    if (strlen(*ciphers) == 0 && ERR_GET_REASON(err) == SSL_R_NO_CIPHER_MATCH) {
      // TLS1.2 ciphers were deliberately cleared, so don't consider
      // SSL_R_NO_CIPHER_MATCH to be an error (this is how _set_cipher_suites()
      // works). If the user actually sets a value (like "no-such-cipher"), then
      // that's actually an error.
      return;
    }
    return ThrowCryptoError(env, err, "Failed to set ciphers");
  }
}


void SecureContext::SetECDHCurve(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  if (args.Length() != 1)
    return THROW_ERR_MISSING_ARGS(env, "ECDH curve name argument is mandatory");

  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "ECDH curve name");

  node::Utf8Value curve(env->isolate(), args[0]);

  if (strcmp(*curve, "auto") == 0)
    return;

  if (!SSL_CTX_set1_curves_list(sc->ctx_.get(), *curve))
    return env->ThrowError("Failed to set ECDH curve");
}


void SecureContext::SetDHParam(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.This());
  Environment* env = sc->env();
  ClearErrorOnReturn clear_error_on_return;

  // Auto DH is not supported in openssl 1.0.1, so dhparam needs
  // to be specified explicitly
  if (args.Length() != 1)
    return THROW_ERR_MISSING_ARGS(env, "DH argument is mandatory");

  DHPointer dh;
  {
    BIOPointer bio(LoadBIO(env, args[0]));
    if (!bio)
      return;

    dh.reset(PEM_read_bio_DHparams(bio.get(), nullptr, nullptr, nullptr));
  }

  // Invalid dhparam is silently discarded and DHE is no longer used.
  if (!dh)
    return;

  const BIGNUM* p;
  DH_get0_pqg(dh.get(), &p, nullptr, nullptr);
  const int size = BN_num_bits(p);
  if (size < 1024) {
    return THROW_ERR_INVALID_ARG_VALUE(
        env, "DH parameter is less than 1024 bits");
  } else if (size < 2048) {
    args.GetReturnValue().Set(FIXED_ONE_BYTE_STRING(
        env->isolate(), "DH parameter is less than 2048 bits"));
  }

  SSL_CTX_set_options(sc->ctx_.get(), SSL_OP_SINGLE_DH_USE);
  int r = SSL_CTX_set_tmp_dh(sc->ctx_.get(), dh.get());

  if (!r)
    return env->ThrowTypeError("Error setting temp DH parameter");
}


void SecureContext::SetMinProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsInt32());

  int version = args[0].As<Int32>()->Value();

  CHECK(SSL_CTX_set_min_proto_version(sc->ctx_.get(), version));
}


void SecureContext::SetMaxProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsInt32());

  int version = args[0].As<Int32>()->Value();

  CHECK(SSL_CTX_set_max_proto_version(sc->ctx_.get(), version));
}


void SecureContext::GetMinProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 0);

  long version =  // NOLINT(runtime/int)
    SSL_CTX_get_min_proto_version(sc->ctx_.get());
  args.GetReturnValue().Set(static_cast<uint32_t>(version));
}


void SecureContext::GetMaxProto(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  CHECK_EQ(args.Length(), 0);

  long version =  // NOLINT(runtime/int)
    SSL_CTX_get_max_proto_version(sc->ctx_.get());
  args.GetReturnValue().Set(static_cast<uint32_t>(version));
}


void SecureContext::SetOptions(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  int64_t val;

  if (args.Length() != 1 ||
      !args[0]->IntegerValue(args.GetIsolate()->GetCurrentContext()).To(&val)) {
    return THROW_ERR_INVALID_ARG_TYPE(
        sc->env(), "Options must be an integer value");
  }

  SSL_CTX_set_options(sc->ctx_.get(),
                      static_cast<long>(val));  // NOLINT(runtime/int)
}


void SecureContext::SetSessionIdContext(
    const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  Environment* env = sc->env();

  if (args.Length() != 1) {
    return THROW_ERR_MISSING_ARGS(
        env, "Session ID context argument is mandatory");
  }

  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Session ID context");

  const node::Utf8Value sessionIdContext(args.GetIsolate(), args[0]);
  const unsigned char* sid_ctx =
      reinterpret_cast<const unsigned char*>(*sessionIdContext);
  unsigned int sid_ctx_len = sessionIdContext.length();

  int r = SSL_CTX_set_session_id_context(sc->ctx_.get(), sid_ctx, sid_ctx_len);
  if (r == 1)
    return;

  BUF_MEM* mem;
  Local<String> message;

  BIOPointer bio(BIO_new(BIO_s_mem()));
  if (!bio) {
    message = FIXED_ONE_BYTE_STRING(args.GetIsolate(),
                                    "SSL_CTX_set_session_id_context error");
  } else {
    ERR_print_errors(bio.get());
    BIO_get_mem_ptr(bio.get(), &mem);
    message = OneByteString(args.GetIsolate(), mem->data, mem->length);
  }

  args.GetIsolate()->ThrowException(Exception::TypeError(message));
}


void SecureContext::SetSessionTimeout(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  if (args.Length() != 1 || !args[0]->IsInt32()) {
    return THROW_ERR_INVALID_ARG_TYPE(
        sc->env(), "Session timeout must be a 32-bit integer");
  }

  int32_t sessionTimeout = args[0].As<Int32>()->Value();
  SSL_CTX_set_timeout(sc->ctx_.get(), sessionTimeout);
}


void SecureContext::Close(const FunctionCallbackInfo<Value>& args) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  sc->Reset();
}


// Takes .pfx or .p12 and password in string or buffer format
void SecureContext::LoadPKCS12(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  std::vector<char> pass;
  bool ret = false;

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());
  ClearErrorOnReturn clear_error_on_return;

  if (args.Length() < 1) {
    return THROW_ERR_MISSING_ARGS(env, "PFX certificate argument is mandatory");
  }

  BIOPointer in(LoadBIO(env, args[0]));
  if (!in)
    return env->ThrowError("Unable to load BIO");

  if (args.Length() >= 2) {
    THROW_AND_RETURN_IF_NOT_BUFFER(env, args[1], "Pass phrase");
    Local<ArrayBufferView> abv = args[1].As<ArrayBufferView>();
    size_t passlen = abv->ByteLength();
    pass.resize(passlen + 1);
    abv->CopyContents(pass.data(), passlen);
    pass[passlen] = '\0';
  }

  // Free previous certs
  sc->issuer_.reset();
  sc->cert_.reset();

  X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_.get());

  DeleteFnPtr<PKCS12, PKCS12_free> p12;
  EVPKeyPointer pkey;
  X509Pointer cert;
  StackOfX509 extra_certs;

  PKCS12* p12_ptr = nullptr;
  EVP_PKEY* pkey_ptr = nullptr;
  X509* cert_ptr = nullptr;
  STACK_OF(X509)* extra_certs_ptr = nullptr;
  if (d2i_PKCS12_bio(in.get(), &p12_ptr) &&
      (p12.reset(p12_ptr), true) &&  // Move ownership to the smart pointer.
      PKCS12_parse(p12.get(), pass.data(),
                   &pkey_ptr,
                   &cert_ptr,
                   &extra_certs_ptr) &&
      (pkey.reset(pkey_ptr), cert.reset(cert_ptr),
       extra_certs.reset(extra_certs_ptr), true) &&  // Move ownership.
      SSL_CTX_use_certificate_chain(sc->ctx_.get(),
                                    std::move(cert),
                                    extra_certs.get(),
                                    &sc->cert_,
                                    &sc->issuer_) &&
      SSL_CTX_use_PrivateKey(sc->ctx_.get(), pkey.get())) {
    // Add CA certs too
    for (int i = 0; i < sk_X509_num(extra_certs.get()); i++) {
      X509* ca = sk_X509_value(extra_certs.get(), i);

      if (cert_store == root_cert_store) {
        cert_store = NewRootCertStore();
        SSL_CTX_set_cert_store(sc->ctx_.get(), cert_store);
      }
      X509_STORE_add_cert(cert_store, ca);
      SSL_CTX_add_client_CA(sc->ctx_.get(), ca);
    }
    ret = true;
  }

  if (!ret) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    const char* str = ERR_reason_error_string(err);
    return env->ThrowError(str);
  }
}


#ifndef OPENSSL_NO_ENGINE
void SecureContext::SetClientCertEngine(
    const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsString());

  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder());

  MarkPopErrorOnReturn mark_pop_error_on_return;

  // SSL_CTX_set_client_cert_engine does not itself support multiple
  // calls by cleaning up before overwriting the client_cert_engine
  // internal context variable.
  // Instead of trying to fix up this problem we in turn also do not
  // support multiple calls to SetClientCertEngine.
  if (sc->client_cert_engine_provided_) {
    return env->ThrowError(
        "Multiple calls to SetClientCertEngine are not allowed");
  }

  const node::Utf8Value engine_id(env->isolate(), args[0]);
  char errmsg[1024];
  DeleteFnPtr<ENGINE, ENGINE_free_fn> engine(
      LoadEngineById(*engine_id, &errmsg));

  if (!engine)
    return env->ThrowError(errmsg);

  // Note that this takes another reference to `engine`.
  int r = SSL_CTX_set_client_cert_engine(sc->ctx_.get(), engine.get());
  if (r == 0)
    return ThrowCryptoError(env, ERR_get_error());
  sc->client_cert_engine_provided_ = true;
}
#endif  // !OPENSSL_NO_ENGINE


void SecureContext::GetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)

  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());

  Local<Object> buff = Buffer::New(wrap->env(), 48).ToLocalChecked();
  memcpy(Buffer::Data(buff), wrap->ticket_key_name_, 16);
  memcpy(Buffer::Data(buff) + 16, wrap->ticket_key_hmac_, 16);
  memcpy(Buffer::Data(buff) + 32, wrap->ticket_key_aes_, 16);

  args.GetReturnValue().Set(buff);
#endif  // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}


void SecureContext::SetTicketKeys(const FunctionCallbackInfo<Value>& args) {
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys)
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());
  Environment* env = wrap->env();

  // TODO(@sam-github) Move type and len check to js, and CHECK() in C++.
  if (args.Length() < 1) {
    return THROW_ERR_MISSING_ARGS(env, "Ticket keys argument is mandatory");
  }

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Ticket keys");
  ArrayBufferViewContents<char> buf(args[0].As<ArrayBufferView>());

  if (buf.length() != 48) {
    return THROW_ERR_INVALID_ARG_VALUE(
        env, "Ticket keys length must be 48 bytes");
  }

  memcpy(wrap->ticket_key_name_, buf.data(), 16);
  memcpy(wrap->ticket_key_hmac_, buf.data() + 16, 16);
  memcpy(wrap->ticket_key_aes_, buf.data() + 32, 16);

  args.GetReturnValue().Set(true);
#endif  // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys)
}


void SecureContext::SetFreeListLength(const FunctionCallbackInfo<Value>& args) {
}


// Currently, EnableTicketKeyCallback and TicketKeyCallback are only present for
// the regression test in test/parallel/test-https-resume-after-renew.js.
void SecureContext::EnableTicketKeyCallback(
    const FunctionCallbackInfo<Value>& args) {
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());

  SSL_CTX_set_tlsext_ticket_key_cb(wrap->ctx_.get(), TicketKeyCallback);
}


int SecureContext::TicketKeyCallback(SSL* ssl,
                                     unsigned char* name,
                                     unsigned char* iv,
                                     EVP_CIPHER_CTX* ectx,
                                     HMAC_CTX* hctx,
                                     int enc) {
  static const int kTicketPartSize = 16;

  SecureContext* sc = static_cast<SecureContext*>(
      SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl)));

  Environment* env = sc->env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  Local<Value> argv[] = {
    Buffer::Copy(env,
                 reinterpret_cast<char*>(name),
                 kTicketPartSize).ToLocalChecked(),
    Buffer::Copy(env,
                 reinterpret_cast<char*>(iv),
                 kTicketPartSize).ToLocalChecked(),
    Boolean::New(env->isolate(), enc != 0)
  };

  Local<Value> ret = node::MakeCallback(env->isolate(),
                                        sc->object(),
                                        env->ticketkeycallback_string(),
                                        arraysize(argv),
                                        argv,
                                        {0, 0}).ToLocalChecked();
  Local<Array> arr = ret.As<Array>();

  int r =
      arr->Get(env->context(),
               kTicketKeyReturnIndex).ToLocalChecked()
               ->Int32Value(env->context()).FromJust();
  if (r < 0)
    return r;

  Local<Value> hmac = arr->Get(env->context(),
                               kTicketKeyHMACIndex).ToLocalChecked();
  Local<Value> aes = arr->Get(env->context(),
                              kTicketKeyAESIndex).ToLocalChecked();
  if (Buffer::Length(aes) != kTicketPartSize)
    return -1;

  if (enc) {
    Local<Value> name_val = arr->Get(env->context(),
                                     kTicketKeyNameIndex).ToLocalChecked();
    Local<Value> iv_val = arr->Get(env->context(),
                                   kTicketKeyIVIndex).ToLocalChecked();

    if (Buffer::Length(name_val) != kTicketPartSize ||
        Buffer::Length(iv_val) != kTicketPartSize) {
      return -1;
    }

    name_val.As<ArrayBufferView>()->CopyContents(name, kTicketPartSize);
    iv_val.As<ArrayBufferView>()->CopyContents(iv, kTicketPartSize);
  }

  ArrayBufferViewContents<unsigned char> hmac_buf(hmac);
  HMAC_Init_ex(hctx,
               hmac_buf.data(),
               hmac_buf.length(),
               EVP_sha256(),
               nullptr);

  ArrayBufferViewContents<unsigned char> aes_key(aes.As<ArrayBufferView>());
  if (enc) {
    EVP_EncryptInit_ex(ectx,
                       EVP_aes_128_cbc(),
                       nullptr,
                       aes_key.data(),
                       iv);
  } else {
    EVP_DecryptInit_ex(ectx,
                       EVP_aes_128_cbc(),
                       nullptr,
                       aes_key.data(),
                       iv);
  }

  return r;
}


int SecureContext::TicketCompatibilityCallback(SSL* ssl,
                                               unsigned char* name,
                                               unsigned char* iv,
                                               EVP_CIPHER_CTX* ectx,
                                               HMAC_CTX* hctx,
                                               int enc) {
  SecureContext* sc = static_cast<SecureContext*>(
      SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl)));

  if (enc) {
    memcpy(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_));
    if (RAND_bytes(iv, 16) <= 0 ||
        EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr,
                           sc->ticket_key_aes_, iv) <= 0 ||
        HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_),
                     EVP_sha256(), nullptr) <= 0) {
      return -1;
    }
    return 1;
  }

  if (memcmp(name, sc->ticket_key_name_, sizeof(sc->ticket_key_name_)) != 0) {
    // The ticket key name does not match. Discard the ticket.
    return 0;
  }

  if (EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, sc->ticket_key_aes_,
                         iv) <= 0 ||
      HMAC_Init_ex(hctx, sc->ticket_key_hmac_, sizeof(sc->ticket_key_hmac_),
                   EVP_sha256(), nullptr) <= 0) {
    return -1;
  }
  return 1;
}


void SecureContext::CtxGetter(const FunctionCallbackInfo<Value>& info) {
  SecureContext* sc;
  ASSIGN_OR_RETURN_UNWRAP(&sc, info.This());
  Local<External> ext = External::New(info.GetIsolate(), sc->ctx_.get());
  info.GetReturnValue().Set(ext);
}


template <bool primary>
void SecureContext::GetCertificate(const FunctionCallbackInfo<Value>& args) {
  SecureContext* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder());
  Environment* env = wrap->env();
  X509* cert;

  if (primary)
    cert = wrap->cert_.get();
  else
    cert = wrap->issuer_.get();
  if (cert == nullptr)
    return args.GetReturnValue().SetNull();

  int size = i2d_X509(cert, nullptr);
  Local<Object> buff = Buffer::New(env, size).ToLocalChecked();
  unsigned char* serialized = reinterpret_cast<unsigned char*>(
      Buffer::Data(buff));
  i2d_X509(cert, &serialized);

  args.GetReturnValue().Set(buff);
}


template <class Base>
void SSLWrap<Base>::AddMethods(Environment* env, Local<FunctionTemplate> t) {
  HandleScope scope(env->isolate());

  env->SetProtoMethodNoSideEffect(t, "getPeerCertificate", GetPeerCertificate);
  env->SetProtoMethodNoSideEffect(t, "getCertificate", GetCertificate);
  env->SetProtoMethodNoSideEffect(t, "getFinished", GetFinished);
  env->SetProtoMethodNoSideEffect(t, "getPeerFinished", GetPeerFinished);
  env->SetProtoMethodNoSideEffect(t, "getSession", GetSession);
  env->SetProtoMethod(t, "setSession", SetSession);
  env->SetProtoMethod(t, "loadSession", LoadSession);
  env->SetProtoMethodNoSideEffect(t, "isSessionReused", IsSessionReused);
  env->SetProtoMethodNoSideEffect(t, "verifyError", VerifyError);
  env->SetProtoMethodNoSideEffect(t, "getCipher", GetCipher);
  env->SetProtoMethodNoSideEffect(t, "getSharedSigalgs", GetSharedSigalgs);
  env->SetProtoMethodNoSideEffect(
      t, "exportKeyingMaterial", ExportKeyingMaterial);
  env->SetProtoMethod(t, "endParser", EndParser);
  env->SetProtoMethod(t, "certCbDone", CertCbDone);
  env->SetProtoMethod(t, "renegotiate", Renegotiate);
  env->SetProtoMethodNoSideEffect(t, "getTLSTicket", GetTLSTicket);
  env->SetProtoMethod(t, "newSessionDone", NewSessionDone);
  env->SetProtoMethod(t, "setOCSPResponse", SetOCSPResponse);
  env->SetProtoMethod(t, "requestOCSP", RequestOCSP);
  env->SetProtoMethodNoSideEffect(t, "getEphemeralKeyInfo",
                                  GetEphemeralKeyInfo);
  env->SetProtoMethodNoSideEffect(t, "getProtocol", GetProtocol);

  env->SetProtoMethod(t, "setMaxSendFragment", SetMaxSendFragment);

  env->SetProtoMethodNoSideEffect(t, "getALPNNegotiatedProtocol",
                                  GetALPNNegotiatedProto);
  env->SetProtoMethod(t, "setALPNProtocols", SetALPNProtocols);
}


template <class Base>
void SSLWrap<Base>::ConfigureSecureContext(SecureContext* sc) {
  // OCSP stapling
  SSL_CTX_set_tlsext_status_cb(sc->ctx_.get(), TLSExtStatusCallback);
  SSL_CTX_set_tlsext_status_arg(sc->ctx_.get(), nullptr);
}


template <class Base>
SSL_SESSION* SSLWrap<Base>::GetSessionCallback(SSL* s,
                                               const unsigned char* key,
                                               int len,
                                               int* copy) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));

  *copy = 0;
  return w->next_sess_.release();
}


template <class Base>
int SSLWrap<Base>::NewSessionCallback(SSL* s, SSL_SESSION* sess) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  if (!w->session_callbacks_)
    return 0;

  // Check if session is small enough to be stored
  int size = i2d_SSL_SESSION(sess, nullptr);
  if (size > SecureContext::kMaxSessionSize)
    return 0;

  // Serialize session
  Local<Object> session = Buffer::New(env, size).ToLocalChecked();
  unsigned char* session_data = reinterpret_cast<unsigned char*>(
      Buffer::Data(session));
  memset(session_data, 0, size);
  i2d_SSL_SESSION(sess, &session_data);

  unsigned int session_id_length;
  const unsigned char* session_id_data = SSL_SESSION_get_id(sess,
                                                            &session_id_length);
  Local<Object> session_id = Buffer::Copy(
      env,
      reinterpret_cast<const char*>(session_id_data),
      session_id_length).ToLocalChecked();
  Local<Value> argv[] = { session_id, session };
  // On servers, we pause the handshake until callback of 'newSession', which
  // calls NewSessionDoneCb(). On clients, there is no callback to wait for.
  if (w->is_server())
    w->awaiting_new_session_ = true;
  w->MakeCallback(env->onnewsession_string(), arraysize(argv), argv);

  return 0;
}


template <class Base>
void SSLWrap<Base>::KeylogCallback(const SSL* s, const char* line) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  const size_t size = strlen(line);
  Local<Value> line_bf = Buffer::Copy(env, line, 1 + size).ToLocalChecked();
  char* data = Buffer::Data(line_bf);
  data[size] = '\n';
  w->MakeCallback(env->onkeylog_string(), 1, &line_bf);
}


template <class Base>
void SSLWrap<Base>::OnClientHello(void* arg,
                                  const ClientHelloParser::ClientHello& hello) {
  Base* w = static_cast<Base*>(arg);
  Environment* env = w->ssl_env();
  HandleScope handle_scope(env->isolate());
  Local<Context> context = env->context();
  Context::Scope context_scope(context);

  Local<Object> hello_obj = Object::New(env->isolate());
  Local<Object> buff = Buffer::Copy(
      env,
      reinterpret_cast<const char*>(hello.session_id()),
      hello.session_size()).ToLocalChecked();
  hello_obj->Set(context, env->session_id_string(), buff).Check();
  if (hello.servername() == nullptr) {
    hello_obj->Set(context,
                   env->servername_string(),
                   String::Empty(env->isolate())).Check();
  } else {
    Local<String> servername = OneByteString(env->isolate(),
                                             hello.servername(),
                                             hello.servername_size());
    hello_obj->Set(context, env->servername_string(), servername).Check();
  }
  hello_obj->Set(context,
                 env->tls_ticket_string(),
                 Boolean::New(env->isolate(), hello.has_ticket())).Check();

  Local<Value> argv[] = { hello_obj };
  w->MakeCallback(env->onclienthello_string(), arraysize(argv), argv);
}

template <class Base>
void SSLWrap<Base>::GetPeerCertificate(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  bool abbreviated = args.Length() < 1 || !args[0]->IsTrue();

  Local<Value> ret;
  if (GetPeerCert(env, w->ssl_, abbreviated, w->is_server()).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetCertificate(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  Local<Value> ret;
  if (GetCert(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetFinished(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // We cannot just pass nullptr to SSL_get_finished()
  // because it would further be propagated to memcpy(),
  // where the standard requirements as described in ISO/IEC 9899:2011
  // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated.
  // Thus, we use a dummy byte.
  char dummy[1];
  size_t len = SSL_get_finished(w->ssl_.get(), dummy, sizeof dummy);
  if (len == 0)
    return;

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len);
  CHECK_EQ(len, SSL_get_finished(w->ssl_.get(), buf.data(), len));
  args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::GetPeerFinished(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // We cannot just pass nullptr to SSL_get_peer_finished()
  // because it would further be propagated to memcpy(),
  // where the standard requirements as described in ISO/IEC 9899:2011
  // sections 7.21.2.1, 7.21.1.2, and 7.1.4, would be violated.
  // Thus, we use a dummy byte.
  char dummy[1];
  size_t len = SSL_get_peer_finished(w->ssl_.get(), dummy, sizeof dummy);
  if (len == 0)
    return;

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, len);
  CHECK_EQ(len, SSL_get_peer_finished(w->ssl_.get(), buf.data(), len));
  args.GetReturnValue().Set(buf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::GetSession(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  SSL_SESSION* sess = SSL_get_session(w->ssl_.get());
  if (sess == nullptr)
    return;

  int slen = i2d_SSL_SESSION(sess, nullptr);
  if (slen <= 0)
    return;  // Invalid or malformed session.

  AllocatedBuffer sbuf = AllocatedBuffer::AllocateManaged(env, slen);
  unsigned char* p = reinterpret_cast<unsigned char*>(sbuf.data());
  CHECK_LT(0, i2d_SSL_SESSION(sess, &p));
  args.GetReturnValue().Set(sbuf.ToBuffer().ToLocalChecked());
}


template <class Base>
void SSLWrap<Base>::SetSession(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  if (args.Length() < 1)
    return THROW_ERR_MISSING_ARGS(env, "Session argument is mandatory");

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Session");

  SSLSessionPointer sess = GetTLSSession(args[0]);
  if (sess == nullptr)
    return;

  if (!SetTLSSession(w->ssl_, sess))
    return env->ThrowError("SSL_set_session error");
}


template <class Base>
void SSLWrap<Base>::LoadSession(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // TODO(@sam-github) check arg length and types in js, and CHECK in c++
  if (args.Length() >= 1 && Buffer::HasInstance(args[0])) {
    ArrayBufferViewContents<unsigned char> sbuf(args[0]);

    const unsigned char* p = sbuf.data();
    SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, sbuf.length());

    // Setup next session and move hello to the BIO buffer
    w->next_sess_.reset(sess);
  }
}


template <class Base>
void SSLWrap<Base>::IsSessionReused(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  bool yes = SSL_session_reused(w->ssl_.get());
  args.GetReturnValue().Set(yes);
}


template <class Base>
void SSLWrap<Base>::EndParser(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  w->hello_parser_.End();
}


template <class Base>
void SSLWrap<Base>::Renegotiate(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  if (SSL_renegotiate(w->ssl_.get()) != 1) {
    return ThrowCryptoError(w->ssl_env(), ERR_get_error());
  }
}


template <class Base>
void SSLWrap<Base>::GetTLSTicket(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  SSL_SESSION* sess = SSL_get_session(w->ssl_.get());
  if (sess == nullptr)
    return;

  const unsigned char* ticket;
  size_t length;
  SSL_SESSION_get0_ticket(sess, &ticket, &length);

  if (ticket == nullptr)
    return;

  Local<Object> buff = Buffer::Copy(
      env, reinterpret_cast<const char*>(ticket), length).ToLocalChecked();

  args.GetReturnValue().Set(buff);
}


template <class Base>
void SSLWrap<Base>::NewSessionDone(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  w->awaiting_new_session_ = false;
  w->NewSessionDoneCb();
}


template <class Base>
void SSLWrap<Base>::SetOCSPResponse(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();

  if (args.Length() < 1)
    return THROW_ERR_MISSING_ARGS(env, "OCSP response argument is mandatory");

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "OCSP response");

  w->ocsp_response_.Reset(args.GetIsolate(), args[0].As<ArrayBufferView>());
}


template <class Base>
void SSLWrap<Base>::RequestOCSP(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  SSL_set_tlsext_status_type(w->ssl_.get(), TLSEXT_STATUSTYPE_ocsp);
}


template <class Base>
void SSLWrap<Base>::GetEphemeralKeyInfo(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = Environment::GetCurrent(args);

  CHECK(w->ssl_);

  // tmp key is available on only client
  if (w->is_server())
    return args.GetReturnValue().SetNull();

  Local<Object> ret;
  if (GetEphemeralKey(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);

  // TODO(@sam-github) semver-major: else return ThrowCryptoError(env,
  // ERR_get_error())
}

template <class Base>
void SSLWrap<Base>::SetMaxSendFragment(
    const FunctionCallbackInfo<Value>& args) {
  CHECK(args.Length() >= 1 && args[0]->IsNumber());

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  int rv = SSL_set_max_send_fragment(
      w->ssl_.get(),
      args[0]->Int32Value(w->ssl_env()->context()).FromJust());
  args.GetReturnValue().Set(rv);
}


template <class Base>
void SSLWrap<Base>::VerifyError(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  // XXX(bnoordhuis) The UNABLE_TO_GET_ISSUER_CERT error when there is no
  // peer certificate is questionable but it's compatible with what was
  // here before.
  long x509_verify_error =  // NOLINT(runtime/int)
      VerifyPeerCertificate(w->ssl_, X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT);

  if (x509_verify_error == X509_V_OK)
    return args.GetReturnValue().SetNull();

  const char* reason = X509_verify_cert_error_string(x509_verify_error);
  const char* code = reason;
  code = X509ErrorCode(x509_verify_error);

  Isolate* isolate = args.GetIsolate();
  Local<String> reason_string = OneByteString(isolate, reason);
  Local<Value> exception_value = Exception::Error(reason_string);
  Local<Object> exception_object =
    exception_value->ToObject(isolate->GetCurrentContext()).ToLocalChecked();
  exception_object->Set(w->env()->context(), w->env()->code_string(),
                        OneByteString(isolate, code)).Check();
  args.GetReturnValue().Set(exception_object);
}


template <class Base>
void SSLWrap<Base>::GetCipher(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  const SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_.get());
  if (c == nullptr)
    return;

  Local<Object> ret;
  if (GetCipherInfo(env, w->ssl_).ToLocal(&ret))
    args.GetReturnValue().Set(ret);
}


template <class Base>
void SSLWrap<Base>::GetSharedSigalgs(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  SSL* ssl = w->ssl_.get();
  int nsig = SSL_get_shared_sigalgs(ssl, 0, nullptr, nullptr, nullptr, nullptr,
                                    nullptr);
  MaybeStackBuffer<Local<Value>, 16> ret_arr(nsig);

  for (int i = 0; i < nsig; i++) {
    int hash_nid;
    int sign_nid;
    std::string sig_with_md;

    SSL_get_shared_sigalgs(ssl, i, &sign_nid, &hash_nid, nullptr, nullptr,
                           nullptr);

    switch (sign_nid) {
      case EVP_PKEY_RSA:
        sig_with_md = "RSA+";
        break;

      case EVP_PKEY_RSA_PSS:
        sig_with_md = "RSA-PSS+";
        break;

      case EVP_PKEY_DSA:
        sig_with_md = "DSA+";
        break;

      case EVP_PKEY_EC:
        sig_with_md = "ECDSA+";
        break;

      case NID_ED25519:
        sig_with_md = "Ed25519+";
        break;

      case NID_ED448:
        sig_with_md = "Ed448+";
        break;
#ifndef OPENSSL_NO_GOST
      case NID_id_GostR3410_2001:
        sig_with_md = "gost2001+";
        break;

      case NID_id_GostR3410_2012_256:
        sig_with_md = "gost2012_256+";
        break;

      case NID_id_GostR3410_2012_512:
        sig_with_md = "gost2012_512+";
        break;
#endif  // !OPENSSL_NO_GOST
      default:
        const char* sn = OBJ_nid2sn(sign_nid);

        if (sn != nullptr) {
          sig_with_md = std::string(sn) + "+";
        } else {
          sig_with_md = "UNDEF+";
        }
        break;
    }

    const char* sn_hash = OBJ_nid2sn(hash_nid);
    if (sn_hash != nullptr) {
      sig_with_md += std::string(sn_hash);
    } else {
      sig_with_md += "UNDEF";
    }
    ret_arr[i] = OneByteString(env->isolate(), sig_with_md.c_str());
  }

  args.GetReturnValue().Set(
                 Array::New(env->isolate(), ret_arr.out(), ret_arr.length()));
}

template <class Base>
void SSLWrap<Base>::ExportKeyingMaterial(
    const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsInt32());
  CHECK(args[1]->IsString());

  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->ssl_env();

  uint32_t olen = args[0].As<Uint32>()->Value();
  node::Utf8Value label(env->isolate(), args[1]);

  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, olen);

  ByteSource context;
  bool use_context = !args[2]->IsUndefined();
  if (use_context)
    context = ByteSource::FromBuffer(args[2]);

  if (SSL_export_keying_material(w->ssl_.get(),
                                 reinterpret_cast<unsigned char*>(out.data()),
                                 olen,
                                 *label,
                                 label.length(),
                                 reinterpret_cast<const unsigned char*>(
                                     context.get()),
                                 context.size(),
                                 use_context) != 1) {
    return ThrowCryptoError(env, ERR_get_error(), "SSL_export_keying_material");
  }

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

template <class Base>
void SSLWrap<Base>::GetProtocol(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  const char* tls_version = SSL_get_version(w->ssl_.get());
  args.GetReturnValue().Set(OneByteString(args.GetIsolate(), tls_version));
}


template <class Base>
int SSLWrap<Base>::SelectALPNCallback(SSL* s,
                                      const unsigned char** out,
                                      unsigned char* outlen,
                                      const unsigned char* in,
                                      unsigned int inlen,
                                      void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->env();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(env->context());

  Local<Value> alpn_buffer =
      w->object()->GetPrivate(
          env->context(),
          env->alpn_buffer_private_symbol()).ToLocalChecked();
  ArrayBufferViewContents<unsigned char> alpn_protos(alpn_buffer);
  int status = SSL_select_next_proto(const_cast<unsigned char**>(out), outlen,
                                     alpn_protos.data(), alpn_protos.length(),
                                     in, inlen);
  // According to 3.2. Protocol Selection of RFC7301, fatal
  // no_application_protocol alert shall be sent but OpenSSL 1.0.2 does not
  // support it yet. See
  // https://rt.openssl.org/Ticket/Display.html?id=3463&user=guest&pass=guest
  return status == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
                                          : SSL_TLSEXT_ERR_NOACK;
}


template <class Base>
void SSLWrap<Base>::GetALPNNegotiatedProto(
    const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());

  const unsigned char* alpn_proto;
  unsigned int alpn_proto_len;

  SSL_get0_alpn_selected(w->ssl_.get(), &alpn_proto, &alpn_proto_len);

  Local<Value> result;
  if (alpn_proto_len == 0) {
    result = False(args.GetIsolate());
  } else if (alpn_proto_len == sizeof("h2") - 1 &&
             0 == memcmp(alpn_proto, "h2", sizeof("h2") - 1)) {
    result = w->env()->h2_string();
  } else if (alpn_proto_len == sizeof("http/1.1") - 1 &&
             0 == memcmp(alpn_proto, "http/1.1", sizeof("http/1.1") - 1)) {
    result = w->env()->http_1_1_string();
  } else {
    result = OneByteString(args.GetIsolate(), alpn_proto, alpn_proto_len);
  }

  args.GetReturnValue().Set(result);
}


template <class Base>
void SSLWrap<Base>::SetALPNProtocols(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();
  if (args.Length() < 1 || !Buffer::HasInstance(args[0]))
    return env->ThrowTypeError("Must give a Buffer as first argument");

  if (w->is_client()) {
    CHECK(SetALPN(w->ssl_, args[0]));
  } else {
    CHECK(
        w->object()->SetPrivate(
            env->context(),
            env->alpn_buffer_private_symbol(),
            args[0]).FromJust());
    // Server should select ALPN protocol from list of advertised by client
    SSL_CTX_set_alpn_select_cb(SSL_get_SSL_CTX(w->ssl_.get()),
                               SelectALPNCallback,
                               nullptr);
  }
}


template <class Base>
int SSLWrap<Base>::TLSExtStatusCallback(SSL* s, void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));
  Environment* env = w->env();
  HandleScope handle_scope(env->isolate());

  if (w->is_client()) {
    // Incoming response
    Local<Value> arg;
    MaybeLocal<Value> ret = GetSSLOCSPResponse(env, s, Null(env->isolate()));
    if (ret.ToLocal(&arg))
      w->MakeCallback(env->onocspresponse_string(), 1, &arg);

    // No async acceptance is possible, so always return 1 to accept the
    // response.  The listener for 'OCSPResponse' event has no control over
    // return value, but it can .destroy() the connection if the response is not
    // acceptable.
    return 1;
  } else {
    // Outgoing response
    if (w->ocsp_response_.IsEmpty())
      return SSL_TLSEXT_ERR_NOACK;

    Local<ArrayBufferView> obj = PersistentToLocal::Default(env->isolate(),
                                                            w->ocsp_response_);
    size_t len = obj->ByteLength();

    // OpenSSL takes control of the pointer after accepting it
    unsigned char* data = MallocOpenSSL<unsigned char>(len);
    obj->CopyContents(data, len);

    if (!SSL_set_tlsext_status_ocsp_resp(s, data, len))
      OPENSSL_free(data);
    w->ocsp_response_.Reset();

    return SSL_TLSEXT_ERR_OK;
  }
}


template <class Base>
void SSLWrap<Base>::WaitForCertCb(CertCb cb, void* arg) {
  cert_cb_ = cb;
  cert_cb_arg_ = arg;
}


template <class Base>
int SSLWrap<Base>::SSLCertCallback(SSL* s, void* arg) {
  Base* w = static_cast<Base*>(SSL_get_app_data(s));

  if (!w->is_server())
    return 1;

  if (!w->is_waiting_cert_cb())
    return 1;

  if (w->cert_cb_running_)
    // Not an error. Suspend handshake with SSL_ERROR_WANT_X509_LOOKUP, and
    // handshake will continue after certcb is done.
    return -1;

  Environment* env = w->env();
  Local<Context> context = env->context();
  HandleScope handle_scope(env->isolate());
  Context::Scope context_scope(context);
  w->cert_cb_running_ = true;

  Local<Object> info = Object::New(env->isolate());

  const char* servername = GetServerName(s);
  if (servername == nullptr) {
    info->Set(context,
              env->servername_string(),
              String::Empty(env->isolate())).Check();
  } else {
    Local<String> str = OneByteString(env->isolate(), servername,
                                      strlen(servername));
    info->Set(context, env->servername_string(), str).Check();
  }

  const bool ocsp = (SSL_get_tlsext_status_type(s) == TLSEXT_STATUSTYPE_ocsp);
  info->Set(context, env->ocsp_request_string(),
            Boolean::New(env->isolate(), ocsp)).Check();

  Local<Value> argv[] = { info };
  w->MakeCallback(env->oncertcb_string(), arraysize(argv), argv);

  if (!w->cert_cb_running_)
    return 1;

  // Performing async action, wait...
  return -1;
}


template <class Base>
void SSLWrap<Base>::CertCbDone(const FunctionCallbackInfo<Value>& args) {
  Base* w;
  ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder());
  Environment* env = w->env();

  CHECK(w->is_waiting_cert_cb() && w->cert_cb_running_);

  Local<Object> object = w->object();
  Local<Value> ctx = object->Get(env->context(),
                                 env->sni_context_string()).ToLocalChecked();
  Local<FunctionTemplate> cons = env->secure_context_constructor_template();

  if (cons->HasInstance(ctx)) {
    SecureContext* sc = Unwrap<SecureContext>(ctx.As<Object>());
    CHECK_NOT_NULL(sc);
    // Store the SNI context for later use.
    w->sni_context_ = BaseObjectPtr<SecureContext>(sc);

    if (UseSNIContext(w->ssl_, w->sni_context_) && !w->SetCACerts(sc)) {
      // Not clear why sometimes we throw error, and sometimes we call
      // onerror(). Both cause .destroy(), but onerror does a bit more.
      unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
      return ThrowCryptoError(env, err, "CertCbDone");
    }
  } else if (ctx->IsObject()) {
    // Failure: incorrect SNI context object
    Local<Value> err = Exception::TypeError(env->sni_context_err_string());
    w->MakeCallback(env->onerror_string(), 1, &err);
    return;
  }

  CertCb cb;
  void* arg;

  cb = w->cert_cb_;
  arg = w->cert_cb_arg_;

  w->cert_cb_running_ = false;
  w->cert_cb_ = nullptr;
  w->cert_cb_arg_ = nullptr;

  cb(arg);
}


template <class Base>
void SSLWrap<Base>::DestroySSL() {
  if (!ssl_)
    return;

  env_->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize);
  ssl_.reset();
}


template <class Base>
int SSLWrap<Base>::SetCACerts(SecureContext* sc) {
  int err = SSL_set1_verify_cert_store(ssl_.get(),
                                       SSL_CTX_get_cert_store(sc->ctx_.get()));
  if (err != 1)
    return err;

  STACK_OF(X509_NAME)* list = SSL_dup_CA_list(
      SSL_CTX_get_client_CA_list(sc->ctx_.get()));

  // NOTE: `SSL_set_client_CA_list` takes the ownership of `list`
  SSL_set_client_CA_list(ssl_.get(), list);
  return 1;
}

template <class Base>
void SSLWrap<Base>::MemoryInfo(MemoryTracker* tracker) const {
  tracker->TrackField("ocsp_response", ocsp_response_);
  tracker->TrackField("sni_context", sni_context_);
}

int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) {
  // From https://www.openssl.org/docs/man1.1.1/man3/SSL_verify_cb:
  //
  //   If VerifyCallback returns 1, the verification process is continued. If
  //   VerifyCallback always returns 1, the TLS/SSL handshake will not be
  //   terminated with respect to verification failures and the connection will
  //   be established. The calling process can however retrieve the error code
  //   of the last verification error using SSL_get_verify_result(3) or by
  //   maintaining its own error storage managed by VerifyCallback.
  //
  // Since we cannot perform I/O quickly enough with X509_STORE_CTX_ APIs in
  // this callback, we ignore all preverify_ok errors and let the handshake
  // continue. It is imperative that the user use Connection::VerifyError after
  // the 'secure' callback has been made.
  return 1;
}

static bool IsSupportedAuthenticatedMode(const EVP_CIPHER* cipher) {
  const int mode = EVP_CIPHER_mode(cipher);
  // Check `chacha20-poly1305` separately, it is also an AEAD cipher,
  // but its mode is 0 which doesn't indicate
  return EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305 ||
         mode == EVP_CIPH_CCM_MODE ||
         mode == EVP_CIPH_GCM_MODE ||
         IS_OCB_MODE(mode);
}

static bool IsSupportedAuthenticatedMode(const EVP_CIPHER_CTX* ctx) {
  const EVP_CIPHER* cipher = EVP_CIPHER_CTX_cipher(ctx);
  return IsSupportedAuthenticatedMode(cipher);
}

enum class ParseKeyResult {
  kParseKeyOk,
  kParseKeyNotRecognized,
  kParseKeyNeedPassphrase,
  kParseKeyFailed
};

static ParseKeyResult TryParsePublicKey(
    EVPKeyPointer* pkey,
    const BIOPointer& bp,
    const char* name,
    // NOLINTNEXTLINE(runtime/int)
    const std::function<EVP_PKEY*(const unsigned char** p, long l)>& parse) {
  unsigned char* der_data;
  long der_len;  // NOLINT(runtime/int)

  // This skips surrounding data and decodes PEM to DER.
  {
    MarkPopErrorOnReturn mark_pop_error_on_return;
    if (PEM_bytes_read_bio(&der_data, &der_len, nullptr, name,
                           bp.get(), nullptr, nullptr) != 1)
      return ParseKeyResult::kParseKeyNotRecognized;
  }

  // OpenSSL might modify the pointer, so we need to make a copy before parsing.
  const unsigned char* p = der_data;
  pkey->reset(parse(&p, der_len));
  OPENSSL_clear_free(der_data, der_len);

  return *pkey ? ParseKeyResult::kParseKeyOk :
                 ParseKeyResult::kParseKeyFailed;
}

static ParseKeyResult ParsePublicKeyPEM(EVPKeyPointer* pkey,
                                        const char* key_pem,
                                        int key_pem_len) {
  BIOPointer bp(BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len));
  if (!bp)
    return ParseKeyResult::kParseKeyFailed;

  ParseKeyResult ret;

  // Try parsing as a SubjectPublicKeyInfo first.
  ret = TryParsePublicKey(pkey, bp, "PUBLIC KEY",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        return d2i_PUBKEY(nullptr, p, l);
      });
  if (ret != ParseKeyResult::kParseKeyNotRecognized)
    return ret;

  // Maybe it is PKCS#1.
  CHECK(BIO_reset(bp.get()));
  ret = TryParsePublicKey(pkey, bp, "RSA PUBLIC KEY",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        return d2i_PublicKey(EVP_PKEY_RSA, nullptr, p, l);
      });
  if (ret != ParseKeyResult::kParseKeyNotRecognized)
    return ret;

  // X.509 fallback.
  CHECK(BIO_reset(bp.get()));
  return TryParsePublicKey(pkey, bp, "CERTIFICATE",
      [](const unsigned char** p, long l) {  // NOLINT(runtime/int)
        X509Pointer x509(d2i_X509(nullptr, p, l));
        return x509 ? X509_get_pubkey(x509.get()) : nullptr;
      });
}

static ParseKeyResult ParsePublicKey(EVPKeyPointer* pkey,
                                     const PublicKeyEncodingConfig& config,
                                     const char* key,
                                     size_t key_len) {
  if (config.format_ == kKeyFormatPEM) {
    return ParsePublicKeyPEM(pkey, key, key_len);
  } else {
    CHECK_EQ(config.format_, kKeyFormatDER);

    const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
    if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
      pkey->reset(d2i_PublicKey(EVP_PKEY_RSA, nullptr, &p, key_len));
    } else {
      CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
      pkey->reset(d2i_PUBKEY(nullptr, &p, key_len));
    }

    return *pkey ? ParseKeyResult::kParseKeyOk :
                   ParseKeyResult::kParseKeyFailed;
  }
}

static inline Local<Value> BIOToStringOrBuffer(Environment* env,
                                               BIO* bio,
                                               PKFormatType format) {
  BUF_MEM* bptr;
  BIO_get_mem_ptr(bio, &bptr);
  if (format == kKeyFormatPEM) {
    // PEM is an ASCII format, so we will return it as a string.
    return String::NewFromUtf8(env->isolate(), bptr->data,
                               NewStringType::kNormal,
                               bptr->length).ToLocalChecked();
  } else {
    CHECK_EQ(format, kKeyFormatDER);
    // DER is binary, return it as a buffer.
    return Buffer::Copy(env, bptr->data, bptr->length).ToLocalChecked();
  }
}

static bool WritePublicKeyInner(EVP_PKEY* pkey,
                                const BIOPointer& bio,
                                const PublicKeyEncodingConfig& config) {
  if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
    // PKCS#1 is only valid for RSA keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);
    RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#1 as PEM.
      return PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) == 1;
    } else {
      // Encode PKCS#1 as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      return i2d_RSAPublicKey_bio(bio.get(), rsa.get()) == 1;
    }
  } else {
    CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI);
    if (config.format_ == kKeyFormatPEM) {
      // Encode SPKI as PEM.
      return PEM_write_bio_PUBKEY(bio.get(), pkey) == 1;
    } else {
      // Encode SPKI as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      return i2d_PUBKEY_bio(bio.get(), pkey) == 1;
    }
  }
}

static MaybeLocal<Value> WritePublicKey(Environment* env,
                                        EVP_PKEY* pkey,
                                        const PublicKeyEncodingConfig& config) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  CHECK(bio);

  if (!WritePublicKeyInner(pkey, bio, config)) {
    ThrowCryptoError(env, ERR_get_error(), "Failed to encode public key");
    return MaybeLocal<Value>();
  }
  return BIOToStringOrBuffer(env, bio.get(), config.format_);
}

static bool IsASN1Sequence(const unsigned char* data, size_t size,
                           size_t* data_offset, size_t* data_size) {
  if (size < 2 || data[0] != 0x30)
    return false;

  if (data[1] & 0x80) {
    // Long form.
    size_t n_bytes = data[1] & ~0x80;
    if (n_bytes + 2 > size || n_bytes > sizeof(size_t))
      return false;
    size_t length = 0;
    for (size_t i = 0; i < n_bytes; i++)
      length = (length << 8) | data[i + 2];
    *data_offset = 2 + n_bytes;
    *data_size = std::min(size - 2 - n_bytes, length);
  } else {
    // Short form.
    *data_offset = 2;
    *data_size = std::min<size_t>(size - 2, data[1]);
  }

  return true;
}

static bool IsRSAPrivateKey(const unsigned char* data, size_t size) {
  // Both RSAPrivateKey and RSAPublicKey structures start with a SEQUENCE.
  size_t offset, len;
  if (!IsASN1Sequence(data, size, &offset, &len))
    return false;

  // An RSAPrivateKey sequence always starts with a single-byte integer whose
  // value is either 0 or 1, whereas an RSAPublicKey starts with the modulus
  // (which is the product of two primes and therefore at least 4), so we can
  // decide the type of the structure based on the first three bytes of the
  // sequence.
  return len >= 3 &&
         data[offset] == 2 &&
         data[offset + 1] == 1 &&
         !(data[offset + 2] & 0xfe);
}

static bool IsEncryptedPrivateKeyInfo(const unsigned char* data, size_t size) {
  // Both PrivateKeyInfo and EncryptedPrivateKeyInfo start with a SEQUENCE.
  size_t offset, len;
  if (!IsASN1Sequence(data, size, &offset, &len))
    return false;

  // A PrivateKeyInfo sequence always starts with an integer whereas an
  // EncryptedPrivateKeyInfo starts with an AlgorithmIdentifier.
  return len >= 1 &&
         data[offset] != 2;
}

static ParseKeyResult ParsePrivateKey(EVPKeyPointer* pkey,
                                      const PrivateKeyEncodingConfig& config,
                                      const char* key,
                                      size_t key_len) {
  // OpenSSL needs a non-const pointer, that's why the const_cast is required.
  char* const passphrase = const_cast<char*>(config.passphrase_.get());

  if (config.format_ == kKeyFormatPEM) {
    BIOPointer bio(BIO_new_mem_buf(key, key_len));
    if (!bio)
      return ParseKeyResult::kParseKeyFailed;

    pkey->reset(PEM_read_bio_PrivateKey(bio.get(),
                                        nullptr,
                                        PasswordCallback,
                                        passphrase));
  } else {
    CHECK_EQ(config.format_, kKeyFormatDER);

    if (config.type_.ToChecked() == kKeyEncodingPKCS1) {
      const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
      pkey->reset(d2i_PrivateKey(EVP_PKEY_RSA, nullptr, &p, key_len));
    } else if (config.type_.ToChecked() == kKeyEncodingPKCS8) {
      BIOPointer bio(BIO_new_mem_buf(key, key_len));
      if (!bio)
        return ParseKeyResult::kParseKeyFailed;

      if (IsEncryptedPrivateKeyInfo(
              reinterpret_cast<const unsigned char*>(key), key_len)) {
        pkey->reset(d2i_PKCS8PrivateKey_bio(bio.get(),
                                            nullptr,
                                            PasswordCallback,
                                            passphrase));
      } else {
        PKCS8Pointer p8inf(d2i_PKCS8_PRIV_KEY_INFO_bio(bio.get(), nullptr));
        if (p8inf)
          pkey->reset(EVP_PKCS82PKEY(p8inf.get()));
      }
    } else {
      CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1);
      const unsigned char* p = reinterpret_cast<const unsigned char*>(key);
      pkey->reset(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, key_len));
    }
  }

  // OpenSSL can fail to parse the key but still return a non-null pointer.
  unsigned long err = ERR_peek_error();  // NOLINT(runtime/int)
  if (err != 0)
    pkey->reset();

  if (*pkey)
    return ParseKeyResult::kParseKeyOk;
  if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
      ERR_GET_REASON(err) == PEM_R_BAD_PASSWORD_READ) {
    if (config.passphrase_.get() == nullptr)
      return ParseKeyResult::kParseKeyNeedPassphrase;
  }
  return ParseKeyResult::kParseKeyFailed;
}

ByteSource::ByteSource(ByteSource&& other)
      : data_(other.data_),
        allocated_data_(other.allocated_data_),
        size_(other.size_) {
  other.allocated_data_ = nullptr;
}

ByteSource::~ByteSource() {
  OPENSSL_clear_free(allocated_data_, size_);
}

ByteSource& ByteSource::operator=(ByteSource&& other) {
  if (&other != this) {
    OPENSSL_clear_free(allocated_data_, size_);
    data_ = other.data_;
    allocated_data_ = other.allocated_data_;
    other.allocated_data_ = nullptr;
    size_ = other.size_;
  }
  return *this;
}

const char* ByteSource::get() const {
  return data_;
}

size_t ByteSource::size() const {
  return size_;
}

ByteSource ByteSource::FromStringOrBuffer(Environment* env,
                                          Local<Value> value) {
  return Buffer::HasInstance(value) ? FromBuffer(value)
                                    : FromString(env, value.As<String>());
}

ByteSource ByteSource::FromString(Environment* env, Local<String> str,
                                  bool ntc) {
  CHECK(str->IsString());
  size_t size = str->Utf8Length(env->isolate());
  size_t alloc_size = ntc ? size + 1 : size;
  char* data = MallocOpenSSL<char>(alloc_size);
  int opts = String::NO_OPTIONS;
  if (!ntc) opts |= String::NO_NULL_TERMINATION;
  str->WriteUtf8(env->isolate(), data, alloc_size, nullptr, opts);
  return Allocated(data, size);
}

ByteSource ByteSource::FromBuffer(Local<Value> buffer, bool ntc) {
  CHECK(buffer->IsArrayBufferView());
  Local<ArrayBufferView> abv = buffer.As<ArrayBufferView>();
  size_t size = abv->ByteLength();
  if (ntc) {
    char* data = MallocOpenSSL<char>(size + 1);
    abv->CopyContents(data, size);
    data[size] = 0;
    return Allocated(data, size);
  }
  return Foreign(Buffer::Data(buffer), size);
}

ByteSource ByteSource::NullTerminatedCopy(Environment* env,
                                          Local<Value> value) {
  return Buffer::HasInstance(value) ? FromBuffer(value, true)
                                    : FromString(env, value.As<String>(), true);
}

ByteSource ByteSource::FromSymmetricKeyObjectHandle(Local<Value> handle) {
  CHECK(handle->IsObject());
  KeyObjectHandle* key = Unwrap<KeyObjectHandle>(handle.As<Object>());
  CHECK_NOT_NULL(key);
  return Foreign(key->Data()->GetSymmetricKey(),
                 key->Data()->GetSymmetricKeySize());
}

ByteSource::ByteSource(const char* data, char* allocated_data, size_t size)
      : data_(data),
        allocated_data_(allocated_data),
        size_(size) {}

ByteSource ByteSource::Allocated(char* data, size_t size) {
  return ByteSource(data, data, size);
}

ByteSource ByteSource::Foreign(const char* data, size_t size) {
  return ByteSource(data, nullptr, size);
}

enum KeyEncodingContext {
  kKeyContextInput,
  kKeyContextExport,
  kKeyContextGenerate
};

static void GetKeyFormatAndTypeFromJs(
    AsymmetricKeyEncodingConfig* config,
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  // During key pair generation, it is possible not to specify a key encoding,
  // which will lead to a key object being returned.
  if (args[*offset]->IsUndefined()) {
    CHECK_EQ(context, kKeyContextGenerate);
    CHECK(args[*offset + 1]->IsUndefined());
    config->output_key_object_ = true;
  } else {
    config->output_key_object_ = false;

    CHECK(args[*offset]->IsInt32());
    config->format_ = static_cast<PKFormatType>(
        args[*offset].As<Int32>()->Value());

    if (args[*offset + 1]->IsInt32()) {
      config->type_ = Just<PKEncodingType>(static_cast<PKEncodingType>(
          args[*offset + 1].As<Int32>()->Value()));
    } else {
      CHECK(context == kKeyContextInput && config->format_ == kKeyFormatPEM);
      CHECK(args[*offset + 1]->IsNullOrUndefined());
      config->type_ = Nothing<PKEncodingType>();
    }
  }

  *offset += 2;
}

static PublicKeyEncodingConfig GetPublicKeyEncodingFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  PublicKeyEncodingConfig result;
  GetKeyFormatAndTypeFromJs(&result, args, offset, context);
  return result;
}

static inline ManagedEVPPKey GetParsedKey(Environment* env,
                                          EVPKeyPointer&& pkey,
                                          ParseKeyResult ret,
                                          const char* default_msg) {
  switch (ret) {
    case ParseKeyResult::kParseKeyOk:
      CHECK(pkey);
      break;
    case ParseKeyResult::kParseKeyNeedPassphrase:
      THROW_ERR_MISSING_PASSPHRASE(env,
                                   "Passphrase required for encrypted key");
      break;
    default:
      ThrowCryptoError(env, ERR_get_error(), default_msg);
  }

  return ManagedEVPPKey(std::move(pkey));
}

static NonCopyableMaybe<PrivateKeyEncodingConfig> GetPrivateKeyEncodingFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    KeyEncodingContext context) {
  Environment* env = Environment::GetCurrent(args);

  PrivateKeyEncodingConfig result;
  GetKeyFormatAndTypeFromJs(&result, args, offset, context);

  if (result.output_key_object_) {
    if (context != kKeyContextInput)
      (*offset)++;
  } else {
    bool needs_passphrase = false;
    if (context != kKeyContextInput) {
      if (args[*offset]->IsString()) {
        String::Utf8Value cipher_name(env->isolate(),
                                      args[*offset].As<String>());
        result.cipher_ = EVP_get_cipherbyname(*cipher_name);
        if (result.cipher_ == nullptr) {
          THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env);
          return NonCopyableMaybe<PrivateKeyEncodingConfig>();
        }
        needs_passphrase = true;
      } else {
        CHECK(args[*offset]->IsNullOrUndefined());
        result.cipher_ = nullptr;
      }
      (*offset)++;
    }

    if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
      CHECK_IMPLIES(context != kKeyContextInput, result.cipher_ != nullptr);

      result.passphrase_ = ByteSource::NullTerminatedCopy(env, args[*offset]);
    } else {
      CHECK(args[*offset]->IsNullOrUndefined() && !needs_passphrase);
    }
  }

  (*offset)++;
  return NonCopyableMaybe<PrivateKeyEncodingConfig>(std::move(result));
}

static ManagedEVPPKey GetPrivateKeyFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset,
    bool allow_key_object) {
  if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
    Environment* env = Environment::GetCurrent(args);
    ByteSource key = ByteSource::FromStringOrBuffer(env, args[(*offset)++]);
    NonCopyableMaybe<PrivateKeyEncodingConfig> config =
        GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
    if (config.IsEmpty())
      return ManagedEVPPKey();

    EVPKeyPointer pkey;
    ParseKeyResult ret =
        ParsePrivateKey(&pkey, config.Release(), key.get(), key.size());
    return GetParsedKey(env, std::move(pkey), ret,
                        "Failed to read private key");
  } else {
    CHECK(args[*offset]->IsObject() && allow_key_object);
    KeyObjectHandle* key;
    ASSIGN_OR_RETURN_UNWRAP(&key, args[*offset].As<Object>(), ManagedEVPPKey());
    CHECK_EQ(key->Data()->GetKeyType(), kKeyTypePrivate);
    (*offset) += 4;
    return key->Data()->GetAsymmetricKey();
  }
}

static ManagedEVPPKey GetPublicOrPrivateKeyFromJs(
    const FunctionCallbackInfo<Value>& args,
    unsigned int* offset) {
  if (args[*offset]->IsString() || Buffer::HasInstance(args[*offset])) {
    Environment* env = Environment::GetCurrent(args);
    ByteSource data = ByteSource::FromStringOrBuffer(env, args[(*offset)++]);
    NonCopyableMaybe<PrivateKeyEncodingConfig> config_ =
        GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput);
    if (config_.IsEmpty())
      return ManagedEVPPKey();

    ParseKeyResult ret;
    PrivateKeyEncodingConfig config = config_.Release();
    EVPKeyPointer pkey;
    if (config.format_ == kKeyFormatPEM) {
      // For PEM, we can easily determine whether it is a public or private key
      // by looking for the respective PEM tags.
      ret = ParsePublicKeyPEM(&pkey, data.get(), data.size());
      if (ret == ParseKeyResult::kParseKeyNotRecognized) {
        ret = ParsePrivateKey(&pkey, config, data.get(), data.size());
      }
    } else {
      // For DER, the type determines how to parse it. SPKI, PKCS#8 and SEC1 are
      // easy, but PKCS#1 can be a public key or a private key.
      bool is_public;
      switch (config.type_.ToChecked()) {
        case kKeyEncodingPKCS1:
          is_public = !IsRSAPrivateKey(
              reinterpret_cast<const unsigned char*>(data.get()), data.size());
          break;
        case kKeyEncodingSPKI:
          is_public = true;
          break;
        case kKeyEncodingPKCS8:
        case kKeyEncodingSEC1:
          is_public = false;
          break;
        default:
          UNREACHABLE("Invalid key encoding type");
      }

      if (is_public) {
        ret = ParsePublicKey(&pkey, config, data.get(), data.size());
      } else {
        ret = ParsePrivateKey(&pkey, config, data.get(), data.size());
      }
    }

    return GetParsedKey(env, std::move(pkey), ret,
                        "Failed to read asymmetric key");
  } else {
    CHECK(args[*offset]->IsObject());
    KeyObjectHandle* key = Unwrap<KeyObjectHandle>(args[*offset].As<Object>());
    CHECK_NOT_NULL(key);
    CHECK_NE(key->Data()->GetKeyType(), kKeyTypeSecret);
    (*offset) += 4;
    return key->Data()->GetAsymmetricKey();
  }
}

static MaybeLocal<Value> WritePrivateKey(
    Environment* env,
    EVP_PKEY* pkey,
    const PrivateKeyEncodingConfig& config) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  CHECK(bio);

  bool err;

  PKEncodingType encoding_type = config.type_.ToChecked();
  if (encoding_type == kKeyEncodingPKCS1) {
    // PKCS#1 is only permitted for RSA keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA);

    RSAPointer rsa(EVP_PKEY_get1_RSA(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#1 as PEM.
      const char* pass = config.passphrase_.get();
      err = PEM_write_bio_RSAPrivateKey(
                bio.get(), rsa.get(),
                config.cipher_,
                reinterpret_cast<unsigned char*>(const_cast<char*>(pass)),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode PKCS#1 as DER. This does not permit encryption.
      CHECK_EQ(config.format_, kKeyFormatDER);
      CHECK_NULL(config.cipher_);
      err = i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1;
    }
  } else if (encoding_type == kKeyEncodingPKCS8) {
    if (config.format_ == kKeyFormatPEM) {
      // Encode PKCS#8 as PEM.
      err = PEM_write_bio_PKCS8PrivateKey(
                bio.get(), pkey,
                config.cipher_,
                const_cast<char*>(config.passphrase_.get()),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode PKCS#8 as DER.
      CHECK_EQ(config.format_, kKeyFormatDER);
      err = i2d_PKCS8PrivateKey_bio(
                bio.get(), pkey,
                config.cipher_,
                const_cast<char*>(config.passphrase_.get()),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    }
  } else {
    CHECK_EQ(encoding_type, kKeyEncodingSEC1);

    // SEC1 is only permitted for EC keys.
    CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC);

    ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey));
    if (config.format_ == kKeyFormatPEM) {
      // Encode SEC1 as PEM.
      const char* pass = config.passphrase_.get();
      err = PEM_write_bio_ECPrivateKey(
                bio.get(), ec_key.get(),
                config.cipher_,
                reinterpret_cast<unsigned char*>(const_cast<char*>(pass)),
                config.passphrase_.size(),
                nullptr, nullptr) != 1;
    } else {
      // Encode SEC1 as DER. This does not permit encryption.
      CHECK_EQ(config.format_, kKeyFormatDER);
      CHECK_NULL(config.cipher_);
      err = i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1;
    }
  }

  if (err) {
    ThrowCryptoError(env, ERR_get_error(), "Failed to encode private key");
    return MaybeLocal<Value>();
  }
  return BIOToStringOrBuffer(env, bio.get(), config.format_);
}

ManagedEVPPKey::ManagedEVPPKey(EVPKeyPointer&& pkey) : pkey_(std::move(pkey)) {}

ManagedEVPPKey::ManagedEVPPKey(const ManagedEVPPKey& that) {
  *this = that;
}

ManagedEVPPKey& ManagedEVPPKey::operator=(const ManagedEVPPKey& that) {
  pkey_.reset(that.get());

  if (pkey_)
    EVP_PKEY_up_ref(pkey_.get());

  return *this;
}

ManagedEVPPKey::operator bool() const {
  return !!pkey_;
}

EVP_PKEY* ManagedEVPPKey::get() const {
  return pkey_.get();
}

std::shared_ptr<KeyObjectData> KeyObjectData::CreateSecret(
    Local<ArrayBufferView> abv) {
  size_t key_len = abv->ByteLength();
  char* mem = MallocOpenSSL<char>(key_len);
  abv->CopyContents(mem, key_len);
  return std::shared_ptr<KeyObjectData>(new KeyObjectData(
      std::unique_ptr<char, std::function<void(char*)>>(mem,
          [key_len](char* p) {
            OPENSSL_clear_free(p, key_len);
          }),
      key_len));
}

std::shared_ptr<KeyObjectData> KeyObjectData::CreateAsymmetric(
    KeyType key_type,
    const ManagedEVPPKey& pkey) {
  CHECK(pkey);
  return std::shared_ptr<KeyObjectData>(new KeyObjectData(key_type, pkey));
}

KeyType KeyObjectData::GetKeyType() const {
  return key_type_;
}

ManagedEVPPKey KeyObjectData::GetAsymmetricKey() const {
  CHECK_NE(key_type_, kKeyTypeSecret);
  return asymmetric_key_;
}

const char* KeyObjectData::GetSymmetricKey() const {
  CHECK_EQ(key_type_, kKeyTypeSecret);
  return symmetric_key_.get();
}

size_t KeyObjectData::GetSymmetricKeySize() const {
  CHECK_EQ(key_type_, kKeyTypeSecret);
  return symmetric_key_len_;
}

Local<Function> KeyObjectHandle::Initialize(Environment* env) {
  Local<Function> templ = env->crypto_key_object_handle_constructor();
  if (!templ.IsEmpty()) {
    return templ;
  }
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
  t->InstanceTemplate()->SetInternalFieldCount(
      KeyObjectHandle::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethodNoSideEffect(t, "getSymmetricKeySize",
                                  GetSymmetricKeySize);
  env->SetProtoMethodNoSideEffect(t, "getAsymmetricKeyType",
                                  GetAsymmetricKeyType);
  env->SetProtoMethod(t, "export", Export);

  auto function = t->GetFunction(env->context()).ToLocalChecked();
  env->set_crypto_key_object_handle_constructor(function);
  return KeyObjectHandle::Initialize(env);
}

MaybeLocal<Object> KeyObjectHandle::Create(
    Environment* env,
    std::shared_ptr<KeyObjectData> data) {
  Local<Object> obj;
  Local<Function> fctun = KeyObjectHandle::Initialize(env);
  if (!fctun->NewInstance(env->context(), 0, nullptr).ToLocal(&obj)) {
    return MaybeLocal<Object>();
  }

  KeyObjectHandle* key = Unwrap<KeyObjectHandle>(obj);
  CHECK_NOT_NULL(key);
  key->data_ = data;
  return obj;
}

const std::shared_ptr<KeyObjectData>& KeyObjectHandle::Data() {
  return data_;
}

void KeyObjectHandle::New(const FunctionCallbackInfo<Value>& args) {
  CHECK(args.IsConstructCall());
  Environment* env = Environment::GetCurrent(args);
  new KeyObjectHandle(env, args.This());
}

KeyObjectHandle::KeyObjectHandle(Environment* env,
                                 Local<Object> wrap)
    : BaseObject(env, wrap) {
  MakeWeak();
}

void KeyObjectHandle::Init(const FunctionCallbackInfo<Value>& args) {
  KeyObjectHandle* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  CHECK(args[0]->IsInt32());
  KeyType type = static_cast<KeyType>(args[0].As<Uint32>()->Value());

  unsigned int offset;
  ManagedEVPPKey pkey;

  switch (type) {
  case kKeyTypeSecret:
    CHECK_EQ(args.Length(), 2);
    CHECK(args[1]->IsArrayBufferView());
    key->data_ = KeyObjectData::CreateSecret(args[1].As<ArrayBufferView>());
    break;
  case kKeyTypePublic:
    CHECK_EQ(args.Length(), 4);

    offset = 1;
    pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
    if (!pkey)
      return;
    key->data_ = KeyObjectData::CreateAsymmetric(type, pkey);
    break;
  case kKeyTypePrivate:
    CHECK_EQ(args.Length(), 5);

    offset = 1;
    pkey = GetPrivateKeyFromJs(args, &offset, false);
    if (!pkey)
      return;
    key->data_ = KeyObjectData::CreateAsymmetric(type, pkey);
    break;
  default:
    CHECK(false);
  }
}

Local<Value> KeyObjectHandle::GetAsymmetricKeyType() const {
  const ManagedEVPPKey& key = data_->GetAsymmetricKey();
  switch (EVP_PKEY_id(key.get())) {
  case EVP_PKEY_RSA:
    return env()->crypto_rsa_string();
  case EVP_PKEY_RSA_PSS:
    return env()->crypto_rsa_pss_string();
  case EVP_PKEY_DSA:
    return env()->crypto_dsa_string();
  case EVP_PKEY_DH:
    return env()->crypto_dh_string();
  case EVP_PKEY_EC:
    return env()->crypto_ec_string();
  case EVP_PKEY_ED25519:
    return env()->crypto_ed25519_string();
  case EVP_PKEY_ED448:
    return env()->crypto_ed448_string();
  case EVP_PKEY_X25519:
    return env()->crypto_x25519_string();
  case EVP_PKEY_X448:
    return env()->crypto_x448_string();
  default:
    return Undefined(env()->isolate());
  }
}

void KeyObjectHandle::GetAsymmetricKeyType(
    const FunctionCallbackInfo<Value>& args) {
  KeyObjectHandle* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());

  args.GetReturnValue().Set(key->GetAsymmetricKeyType());
}

void KeyObjectHandle::GetSymmetricKeySize(
    const FunctionCallbackInfo<Value>& args) {
  KeyObjectHandle* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());
  args.GetReturnValue().Set(
      static_cast<uint32_t>(key->Data()->GetSymmetricKeySize()));
}

void KeyObjectHandle::Export(const FunctionCallbackInfo<Value>& args) {
  KeyObjectHandle* key;
  ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder());

  KeyType type = key->Data()->GetKeyType();

  MaybeLocal<Value> result;
  if (type == kKeyTypeSecret) {
    result = key->ExportSecretKey();
  } else if (type == kKeyTypePublic) {
    unsigned int offset = 0;
    PublicKeyEncodingConfig config =
        GetPublicKeyEncodingFromJs(args, &offset, kKeyContextExport);
    CHECK_EQ(offset, static_cast<unsigned int>(args.Length()));
    result = key->ExportPublicKey(config);
  } else {
    CHECK_EQ(type, kKeyTypePrivate);
    unsigned int offset = 0;
    NonCopyableMaybe<PrivateKeyEncodingConfig> config =
        GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextExport);
    if (config.IsEmpty())
      return;
    CHECK_EQ(offset, static_cast<unsigned int>(args.Length()));
    result = key->ExportPrivateKey(config.Release());
  }

  if (!result.IsEmpty())
    args.GetReturnValue().Set(result.ToLocalChecked());
}

Local<Value> KeyObjectHandle::ExportSecretKey() const {
  const char* buf = data_->GetSymmetricKey();
  unsigned int len = data_->GetSymmetricKeySize();
  return Buffer::Copy(env(), buf, len).ToLocalChecked();
}

MaybeLocal<Value> KeyObjectHandle::ExportPublicKey(
    const PublicKeyEncodingConfig& config) const {
  return WritePublicKey(env(), data_->GetAsymmetricKey().get(), config);
}

MaybeLocal<Value> KeyObjectHandle::ExportPrivateKey(
    const PrivateKeyEncodingConfig& config) const {
  return WritePrivateKey(env(), data_->GetAsymmetricKey().get(), config);
}

void NativeKeyObject::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK_EQ(args.Length(), 1);
  CHECK(args[0]->IsObject());
  KeyObjectHandle* handle = Unwrap<KeyObjectHandle>(args[0].As<Object>());
  new NativeKeyObject(env, args.This(), handle->Data());
}

BaseObjectPtr<BaseObject> NativeKeyObject::KeyObjectTransferData::Deserialize(
        Environment* env,
        Local<Context> context,
        std::unique_ptr<worker::TransferData> self) {
  if (context != env->context()) {
    THROW_ERR_MESSAGE_TARGET_CONTEXT_UNAVAILABLE(env);
    return {};
  }

  Local<Value> handle = KeyObjectHandle::Create(env, data_).ToLocalChecked();
  Local<Function> key_ctor;
  Local<Value> arg = FIXED_ONE_BYTE_STRING(env->isolate(),
                                              "internal/crypto/keys");
  if (env->native_module_require()->
      Call(context, Null(env->isolate()), 1, &arg).IsEmpty())
    return {};
  switch (data_->GetKeyType()) {
    case kKeyTypeSecret:
      key_ctor = env->crypto_key_object_secret_constructor();
      break;
    case kKeyTypePublic:
      key_ctor = env->crypto_key_object_public_constructor();
      break;
    case kKeyTypePrivate:
      key_ctor = env->crypto_key_object_private_constructor();
      break;
    default:
      CHECK(false);
  }

  Local<Value> key =
      key_ctor->NewInstance(context, 1, &handle).ToLocalChecked();
  return BaseObjectPtr<BaseObject>(Unwrap<KeyObjectHandle>(key.As<Object>()));
}

BaseObject::TransferMode NativeKeyObject::GetTransferMode() const {
  return BaseObject::TransferMode::kCloneable;
}

std::unique_ptr<worker::TransferData> NativeKeyObject::CloneForMessaging()
    const {
  return std::make_unique<KeyObjectTransferData>(handle_data_);
}

static void CreateNativeKeyObjectClass(
    const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CHECK_EQ(args.Length(), 1);
  Local<Value> callback = args[0];
  CHECK(callback->IsFunction());

  Local<FunctionTemplate> t = env->NewFunctionTemplate(NativeKeyObject::New);
  t->InstanceTemplate()->SetInternalFieldCount(
      KeyObjectHandle::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  Local<Value> ctor = t->GetFunction(env->context()).ToLocalChecked();

  Local<Value> recv = Undefined(env->isolate());
  Local<Value> ret_v;
  if (!callback.As<Function>()->Call(
          env->context(), recv, 1, &ctor).ToLocal(&ret_v)) {
    return;
  }
  Local<Array> ret = ret_v.As<Array>();
  if (!ret->Get(env->context(), 1).ToLocal(&ctor)) return;
  env->set_crypto_key_object_secret_constructor(ctor.As<Function>());
  if (!ret->Get(env->context(), 2).ToLocal(&ctor)) return;
  env->set_crypto_key_object_public_constructor(ctor.As<Function>());
  if (!ret->Get(env->context(), 3).ToLocal(&ctor)) return;
  env->set_crypto_key_object_private_constructor(ctor.As<Function>());
  args.GetReturnValue().Set(ret);
}

CipherBase::CipherBase(Environment* env,
                       Local<Object> wrap,
                       CipherKind kind)
    : BaseObject(env, wrap),
      ctx_(nullptr),
      kind_(kind),
      auth_tag_state_(kAuthTagUnknown),
      auth_tag_len_(kNoAuthTagLength),
      pending_auth_failed_(false) {
  MakeWeak();
}

void CipherBase::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      CipherBase::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "init", Init);
  env->SetProtoMethod(t, "initiv", InitIv);
  env->SetProtoMethod(t, "update", Update);
  env->SetProtoMethod(t, "final", Final);
  env->SetProtoMethod(t, "setAutoPadding", SetAutoPadding);
  env->SetProtoMethodNoSideEffect(t, "getAuthTag", GetAuthTag);
  env->SetProtoMethod(t, "setAuthTag", SetAuthTag);
  env->SetProtoMethod(t, "setAAD", SetAAD);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "CipherBase"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void CipherBase::New(const FunctionCallbackInfo<Value>& args) {
  CHECK(args.IsConstructCall());
  CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher;
  Environment* env = Environment::GetCurrent(args);
  new CipherBase(env, args.This(), kind);
}

void CipherBase::CommonInit(const char* cipher_type,
                            const EVP_CIPHER* cipher,
                            const unsigned char* key,
                            int key_len,
                            const unsigned char* iv,
                            int iv_len,
                            unsigned int auth_tag_len) {
  CHECK(!ctx_);
  ctx_.reset(EVP_CIPHER_CTX_new());

  const int mode = EVP_CIPHER_mode(cipher);
  if (mode == EVP_CIPH_WRAP_MODE)
    EVP_CIPHER_CTX_set_flags(ctx_.get(), EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);

  const bool encrypt = (kind_ == kCipher);
  if (1 != EVP_CipherInit_ex(ctx_.get(), cipher, nullptr,
                             nullptr, nullptr, encrypt)) {
    return ThrowCryptoError(env(), ERR_get_error(),
                            "Failed to initialize cipher");
  }

  if (IsSupportedAuthenticatedMode(cipher)) {
    CHECK_GE(iv_len, 0);
    if (!InitAuthenticated(cipher_type, iv_len, auth_tag_len))
      return;
  }

  if (!EVP_CIPHER_CTX_set_key_length(ctx_.get(), key_len)) {
    ctx_.reset();
    return env()->ThrowError("Invalid key length");
  }

  if (1 != EVP_CipherInit_ex(ctx_.get(), nullptr, nullptr, key, iv, encrypt)) {
    return ThrowCryptoError(env(), ERR_get_error(),
                            "Failed to initialize cipher");
  }
}

void CipherBase::Init(const char* cipher_type,
                      const char* key_buf,
                      int key_buf_len,
                      unsigned int auth_tag_len) {
  HandleScope scope(env()->isolate());
  MarkPopErrorOnReturn mark_pop_error_on_return;

#ifdef NODE_FIPS_MODE
  if (FIPS_mode()) {
    return env()->ThrowError(
        "crypto.createCipher() is not supported in FIPS mode.");
  }
#endif  // NODE_FIPS_MODE

  const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
  if (cipher == nullptr)
    return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());

  unsigned char key[EVP_MAX_KEY_LENGTH];
  unsigned char iv[EVP_MAX_IV_LENGTH];

  int key_len = EVP_BytesToKey(cipher,
                               EVP_md5(),
                               nullptr,
                               reinterpret_cast<const unsigned char*>(key_buf),
                               key_buf_len,
                               1,
                               key,
                               iv);
  CHECK_NE(key_len, 0);

  const int mode = EVP_CIPHER_mode(cipher);
  if (kind_ == kCipher && (mode == EVP_CIPH_CTR_MODE ||
                           mode == EVP_CIPH_GCM_MODE ||
                           mode == EVP_CIPH_CCM_MODE)) {
    // Ignore the return value (i.e. possible exception) because we are
    // not calling back into JS anyway.
    ProcessEmitWarning(env(),
                       "Use Cipheriv for counter mode of %s",
                       cipher_type);
  }

  CommonInit(cipher_type, cipher, key, key_len, iv,
             EVP_CIPHER_iv_length(cipher), auth_tag_len);
}


void CipherBase::Init(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  CHECK_GE(args.Length(), 3);

  const node::Utf8Value cipher_type(args.GetIsolate(), args[0]);
  ArrayBufferViewContents<char> key_buf(args[1]);

  // Don't assign to cipher->auth_tag_len_ directly; the value might not
  // represent a valid length at this point.
  unsigned int auth_tag_len;
  if (args[2]->IsUint32()) {
    auth_tag_len = args[2].As<Uint32>()->Value();
  } else {
    CHECK(args[2]->IsInt32() && args[2].As<Int32>()->Value() == -1);
    auth_tag_len = kNoAuthTagLength;
  }

  cipher->Init(*cipher_type, key_buf.data(), key_buf.length(), auth_tag_len);
}

void CipherBase::InitIv(const char* cipher_type,
                        const unsigned char* key,
                        int key_len,
                        const unsigned char* iv,
                        int iv_len,
                        unsigned int auth_tag_len) {
  HandleScope scope(env()->isolate());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  const EVP_CIPHER* const cipher = EVP_get_cipherbyname(cipher_type);
  if (cipher == nullptr) {
    return THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env());
  }

  const int expected_iv_len = EVP_CIPHER_iv_length(cipher);
  const bool is_authenticated_mode = IsSupportedAuthenticatedMode(cipher);
  const bool has_iv = iv_len >= 0;

  // Throw if no IV was passed and the cipher requires an IV
  if (!has_iv && expected_iv_len != 0) {
    char msg[128];
    snprintf(msg, sizeof(msg), "Missing IV for cipher %s", cipher_type);
    return env()->ThrowError(msg);
  }

  // Throw if an IV was passed which does not match the cipher's fixed IV length
  if (!is_authenticated_mode && has_iv && iv_len != expected_iv_len) {
    return env()->ThrowError("Invalid IV length");
  }

  if (EVP_CIPHER_nid(cipher) == NID_chacha20_poly1305) {
    CHECK(has_iv);
    // Check for invalid IV lengths, since OpenSSL does not under some
    // conditions:
    //   https://www.openssl.org/news/secadv/20190306.txt.
    if (iv_len > 12) {
      return env()->ThrowError("Invalid IV length");
    }
  }

  CommonInit(cipher_type, cipher, key, key_len, iv, iv_len, auth_tag_len);
}


static ByteSource GetSecretKeyBytes(Environment* env, Local<Value> value) {
  // A key can be passed as a string, buffer or KeyObject with type 'secret'.
  // If it is a string, we need to convert it to a buffer. We are not doing that
  // in JS to avoid creating an unprotected copy on the heap.
  return value->IsString() || Buffer::HasInstance(value) ?
           ByteSource::FromStringOrBuffer(env, value) :
           ByteSource::FromSymmetricKeyObjectHandle(value);
}

void CipherBase::InitIv(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
  Environment* env = cipher->env();

  CHECK_GE(args.Length(), 4);

  const node::Utf8Value cipher_type(env->isolate(), args[0]);
  const ByteSource key = GetSecretKeyBytes(env, args[1]);

  ArrayBufferViewContents<unsigned char> iv_buf;
  ssize_t iv_len = -1;
  if (!args[2]->IsNull()) {
    CHECK(args[2]->IsArrayBufferView());
    iv_buf.Read(args[2].As<ArrayBufferView>());
    iv_len = iv_buf.length();
  }

  // Don't assign to cipher->auth_tag_len_ directly; the value might not
  // represent a valid length at this point.
  unsigned int auth_tag_len;
  if (args[3]->IsUint32()) {
    auth_tag_len = args[3].As<Uint32>()->Value();
  } else {
    CHECK(args[3]->IsInt32() && args[3].As<Int32>()->Value() == -1);
    auth_tag_len = kNoAuthTagLength;
  }

  cipher->InitIv(*cipher_type,
                 reinterpret_cast<const unsigned char*>(key.get()),
                 key.size(),
                 iv_buf.data(),
                 static_cast<int>(iv_len),
                 auth_tag_len);
}


static bool IsValidGCMTagLength(unsigned int tag_len) {
  return tag_len == 4 || tag_len == 8 || (tag_len >= 12 && tag_len <= 16);
}

bool CipherBase::InitAuthenticated(const char* cipher_type, int iv_len,
                                   unsigned int auth_tag_len) {
  CHECK(IsAuthenticatedMode());
  MarkPopErrorOnReturn mark_pop_error_on_return;

  if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
                           EVP_CTRL_AEAD_SET_IVLEN,
                           iv_len,
                           nullptr)) {
    env()->ThrowError("Invalid IV length");
    return false;
  }

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());
  if (mode == EVP_CIPH_GCM_MODE) {
    if (auth_tag_len != kNoAuthTagLength) {
      if (!IsValidGCMTagLength(auth_tag_len)) {
        char msg[50];
        snprintf(msg, sizeof(msg),
            "Invalid authentication tag length: %u", auth_tag_len);
        env()->ThrowError(msg);
        return false;
      }

      // Remember the given authentication tag length for later.
      auth_tag_len_ = auth_tag_len;
    }
  } else {
    if (auth_tag_len == kNoAuthTagLength) {
      char msg[128];
      snprintf(msg, sizeof(msg), "authTagLength required for %s", cipher_type);
      env()->ThrowError(msg);
      return false;
    }

#ifdef NODE_FIPS_MODE
    // TODO(tniessen) Support CCM decryption in FIPS mode
    if (mode == EVP_CIPH_CCM_MODE && kind_ == kDecipher && FIPS_mode()) {
      env()->ThrowError("CCM decryption not supported in FIPS mode");
      return false;
    }
#endif

    // Tell OpenSSL about the desired length.
    if (!EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_SET_TAG, auth_tag_len,
                             nullptr)) {
      env()->ThrowError("Invalid authentication tag length");
      return false;
    }

    // Remember the given authentication tag length for later.
    auth_tag_len_ = auth_tag_len;

    if (mode == EVP_CIPH_CCM_MODE) {
      // Restrict the message length to min(INT_MAX, 2^(8*(15-iv_len))-1) bytes.
      CHECK(iv_len >= 7 && iv_len <= 13);
      max_message_size_ = INT_MAX;
      if (iv_len == 12) max_message_size_ = 16777215;
      if (iv_len == 13) max_message_size_ = 65535;
    }
  }

  return true;
}


bool CipherBase::CheckCCMMessageLength(int message_len) {
  CHECK(ctx_);
  CHECK(EVP_CIPHER_CTX_mode(ctx_.get()) == EVP_CIPH_CCM_MODE);

  if (message_len > max_message_size_) {
    env()->ThrowError("Message exceeds maximum size");
    return false;
  }

  return true;
}


bool CipherBase::IsAuthenticatedMode() const {
  // Check if this cipher operates in an AEAD mode that we support.
  CHECK(ctx_);
  return IsSupportedAuthenticatedMode(ctx_.get());
}


void CipherBase::GetAuthTag(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  // Only callable after Final and if encrypting.
  if (cipher->ctx_ ||
      cipher->kind_ != kCipher ||
      cipher->auth_tag_len_ == kNoAuthTagLength) {
    return args.GetReturnValue().SetUndefined();
  }

  Local<Object> buf =
      Buffer::Copy(env, cipher->auth_tag_, cipher->auth_tag_len_)
      .ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void CipherBase::SetAuthTag(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  if (!cipher->ctx_ ||
      !cipher->IsAuthenticatedMode() ||
      cipher->kind_ != kDecipher ||
      cipher->auth_tag_state_ != kAuthTagUnknown) {
    return args.GetReturnValue().Set(false);
  }

  unsigned int tag_len = Buffer::Length(args[0]);
  const int mode = EVP_CIPHER_CTX_mode(cipher->ctx_.get());
  bool is_valid;
  if (mode == EVP_CIPH_GCM_MODE) {
    // Restrict GCM tag lengths according to NIST 800-38d, page 9.
    is_valid = (cipher->auth_tag_len_ == kNoAuthTagLength ||
                cipher->auth_tag_len_ == tag_len) &&
               IsValidGCMTagLength(tag_len);
  } else {
    // At this point, the tag length is already known and must match the
    // length of the given authentication tag.
    CHECK(IsSupportedAuthenticatedMode(cipher->ctx_.get()));
    CHECK_NE(cipher->auth_tag_len_, kNoAuthTagLength);
    is_valid = cipher->auth_tag_len_ == tag_len;
  }

  if (!is_valid) {
    char msg[50];
    snprintf(msg, sizeof(msg),
        "Invalid authentication tag length: %u", tag_len);
    return cipher->env()->ThrowError(msg);
  }

  cipher->auth_tag_len_ = tag_len;
  cipher->auth_tag_state_ = kAuthTagKnown;
  CHECK_LE(cipher->auth_tag_len_, sizeof(cipher->auth_tag_));

  memset(cipher->auth_tag_, 0, sizeof(cipher->auth_tag_));
  args[0].As<ArrayBufferView>()->CopyContents(
      cipher->auth_tag_, cipher->auth_tag_len_);

  args.GetReturnValue().Set(true);
}


bool CipherBase::MaybePassAuthTagToOpenSSL() {
  if (auth_tag_state_ == kAuthTagKnown) {
    if (!EVP_CIPHER_CTX_ctrl(ctx_.get(),
                             EVP_CTRL_AEAD_SET_TAG,
                             auth_tag_len_,
                             reinterpret_cast<unsigned char*>(auth_tag_))) {
      return false;
    }
    auth_tag_state_ = kAuthTagPassedToOpenSSL;
  }
  return true;
}


bool CipherBase::SetAAD(const char* data, unsigned int len, int plaintext_len) {
  if (!ctx_ || !IsAuthenticatedMode())
    return false;
  MarkPopErrorOnReturn mark_pop_error_on_return;

  int outlen;
  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  // When in CCM mode, we need to set the authentication tag and the plaintext
  // length in advance.
  if (mode == EVP_CIPH_CCM_MODE) {
    if (plaintext_len < 0) {
      env()->ThrowError("plaintextLength required for CCM mode with AAD");
      return false;
    }

    if (!CheckCCMMessageLength(plaintext_len))
      return false;

    if (kind_ == kDecipher) {
      if (!MaybePassAuthTagToOpenSSL())
        return false;
    }

    // Specify the plaintext length.
    if (!EVP_CipherUpdate(ctx_.get(), nullptr, &outlen, nullptr, plaintext_len))
      return false;
  }

  return 1 == EVP_CipherUpdate(ctx_.get(),
                               nullptr,
                               &outlen,
                               reinterpret_cast<const unsigned char*>(data),
                               len);
}


void CipherBase::SetAAD(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  CHECK_EQ(args.Length(), 2);
  CHECK(args[1]->IsInt32());
  int plaintext_len = args[1].As<Int32>()->Value();
  ArrayBufferViewContents<char> buf(args[0]);

  bool b = cipher->SetAAD(buf.data(), buf.length(), plaintext_len);
  args.GetReturnValue().Set(b);  // Possibly report invalid state failure
}

CipherBase::UpdateResult CipherBase::Update(const char* data,
                                            int len,
                                            AllocatedBuffer* out) {
  if (!ctx_)
    return kErrorState;
  MarkPopErrorOnReturn mark_pop_error_on_return;

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  if (mode == EVP_CIPH_CCM_MODE) {
    if (!CheckCCMMessageLength(len))
      return kErrorMessageSize;
  }

  // Pass the authentication tag to OpenSSL if possible. This will only happen
  // once, usually on the first update.
  if (kind_ == kDecipher && IsAuthenticatedMode()) {
    CHECK(MaybePassAuthTagToOpenSSL());
  }

  int buf_len = len + EVP_CIPHER_CTX_block_size(ctx_.get());
  // For key wrapping algorithms, get output size by calling
  // EVP_CipherUpdate() with null output.
  if (kind_ == kCipher && mode == EVP_CIPH_WRAP_MODE &&
      EVP_CipherUpdate(ctx_.get(),
                       nullptr,
                       &buf_len,
                       reinterpret_cast<const unsigned char*>(data),
                       len) != 1) {
    return kErrorState;
  }

  *out = AllocatedBuffer::AllocateManaged(env(), buf_len);
  int r = EVP_CipherUpdate(ctx_.get(),
                           reinterpret_cast<unsigned char*>(out->data()),
                           &buf_len,
                           reinterpret_cast<const unsigned char*>(data),
                           len);

  CHECK_LE(static_cast<size_t>(buf_len), out->size());
  out->Resize(buf_len);

  // When in CCM mode, EVP_CipherUpdate will fail if the authentication tag is
  // invalid. In that case, remember the error and throw in final().
  if (!r && kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
    pending_auth_failed_ = true;
    return kSuccess;
  }
  return r == 1 ? kSuccess : kErrorState;
}


void CipherBase::Update(const FunctionCallbackInfo<Value>& args) {
  Decode<CipherBase>(args, [](CipherBase* cipher,
                              const FunctionCallbackInfo<Value>& args,
                              const char* data, size_t size) {
    AllocatedBuffer out;
    UpdateResult r = cipher->Update(data, size, &out);

    if (r != kSuccess) {
      if (r == kErrorState) {
        Environment* env = Environment::GetCurrent(args);
        ThrowCryptoError(env, ERR_get_error(),
                         "Trying to add data in unsupported state");
      }
      return;
    }

    CHECK(out.data() != nullptr || out.size() == 0);
    args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
  });
}


bool CipherBase::SetAutoPadding(bool auto_padding) {
  if (!ctx_)
    return false;
  MarkPopErrorOnReturn mark_pop_error_on_return;
  return EVP_CIPHER_CTX_set_padding(ctx_.get(), auto_padding);
}


void CipherBase::SetAutoPadding(const FunctionCallbackInfo<Value>& args) {
  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());

  bool b = cipher->SetAutoPadding(args.Length() < 1 || args[0]->IsTrue());
  args.GetReturnValue().Set(b);  // Possibly report invalid state failure
}

bool CipherBase::Final(AllocatedBuffer* out) {
  if (!ctx_)
    return false;

  const int mode = EVP_CIPHER_CTX_mode(ctx_.get());

  *out = AllocatedBuffer::AllocateManaged(
      env(),
      static_cast<size_t>(EVP_CIPHER_CTX_block_size(ctx_.get())));

  if (kind_ == kDecipher && IsSupportedAuthenticatedMode(ctx_.get())) {
    MaybePassAuthTagToOpenSSL();
  }

  // In CCM mode, final() only checks whether authentication failed in update().
  // EVP_CipherFinal_ex must not be called and will fail.
  bool ok;
  if (kind_ == kDecipher && mode == EVP_CIPH_CCM_MODE) {
    ok = !pending_auth_failed_;
    *out = AllocatedBuffer::AllocateManaged(env(), 0);  // Empty buffer.
  } else {
    int out_len = out->size();
    ok = EVP_CipherFinal_ex(ctx_.get(),
                            reinterpret_cast<unsigned char*>(out->data()),
                            &out_len) == 1;

    if (out_len >= 0)
      out->Resize(out_len);
    else
      *out = AllocatedBuffer();  // *out will not be used.

    if (ok && kind_ == kCipher && IsAuthenticatedMode()) {
      // In GCM mode, the authentication tag length can be specified in advance,
      // but defaults to 16 bytes when encrypting. In CCM and OCB mode, it must
      // always be given by the user.
      if (auth_tag_len_ == kNoAuthTagLength) {
        CHECK(mode == EVP_CIPH_GCM_MODE);
        auth_tag_len_ = sizeof(auth_tag_);
      }
      CHECK_EQ(1, EVP_CIPHER_CTX_ctrl(ctx_.get(), EVP_CTRL_AEAD_GET_TAG,
                      auth_tag_len_,
                      reinterpret_cast<unsigned char*>(auth_tag_)));
    }
  }

  ctx_.reset();

  return ok;
}


void CipherBase::Final(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CipherBase* cipher;
  ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder());
  if (cipher->ctx_ == nullptr) return env->ThrowError("Unsupported state");

  AllocatedBuffer out;

  // Check IsAuthenticatedMode() first, Final() destroys the EVP_CIPHER_CTX.
  const bool is_auth_mode = cipher->IsAuthenticatedMode();
  bool r = cipher->Final(&out);

  if (!r) {
    const char* msg = is_auth_mode
                          ? "Unsupported state or unable to authenticate data"
                          : "Unsupported state";

    return ThrowCryptoError(env, ERR_get_error(), msg);
  }

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

Hmac::Hmac(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap),
      ctx_(nullptr) {
  MakeWeak();
}

void Hmac::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      Hmac::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "init", HmacInit);
  env->SetProtoMethod(t, "update", HmacUpdate);
  env->SetProtoMethod(t, "digest", HmacDigest);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Hmac"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Hmac::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Hmac(env, args.This());
}


void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) {
  HandleScope scope(env()->isolate());

  const EVP_MD* md = EVP_get_digestbyname(hash_type);
  if (md == nullptr) {
    return env()->ThrowError("Unknown message digest");
  }
  if (key_len == 0) {
    key = "";
  }
  ctx_.reset(HMAC_CTX_new());
  if (!ctx_ || !HMAC_Init_ex(ctx_.get(), key, key_len, md, nullptr)) {
    ctx_.reset();
    return ThrowCryptoError(env(), ERR_get_error());
  }
}


void Hmac::HmacInit(const FunctionCallbackInfo<Value>& args) {
  Hmac* hmac;
  ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder());
  Environment* env = hmac->env();

  const node::Utf8Value hash_type(env->isolate(), args[0]);
  ByteSource key = GetSecretKeyBytes(env, args[1]);
  hmac->HmacInit(*hash_type, key.get(), key.size());
}


bool Hmac::HmacUpdate(const char* data, int len) {
  if (!ctx_)
    return false;
  int r = HMAC_Update(ctx_.get(),
                      reinterpret_cast<const unsigned char*>(data),
                      len);
  return r == 1;
}


void Hmac::HmacUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Hmac>(args, [](Hmac* hmac, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    bool r = hmac->HmacUpdate(data, size);
    args.GetReturnValue().Set(r);
  });
}


void Hmac::HmacDigest(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Hmac* hmac;
  ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder());

  enum encoding encoding = BUFFER;
  if (args.Length() >= 1) {
    encoding = ParseEncoding(env->isolate(), args[0], BUFFER);
  }

  unsigned char md_value[EVP_MAX_MD_SIZE];
  unsigned int md_len = 0;

  if (hmac->ctx_) {
    HMAC_Final(hmac->ctx_.get(), md_value, &md_len);
    hmac->ctx_.reset();
  }

  Local<Value> error;
  MaybeLocal<Value> rc =
      StringBytes::Encode(env->isolate(),
                          reinterpret_cast<const char*>(md_value),
                          md_len,
                          encoding,
                          &error);
  if (rc.IsEmpty()) {
    CHECK(!error.IsEmpty());
    env->isolate()->ThrowException(error);
    return;
  }
  args.GetReturnValue().Set(rc.ToLocalChecked());
}

Hash::Hash(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap),
      mdctx_(nullptr),
      has_md_(false),
      md_value_(nullptr) {
  MakeWeak();
}

void Hash::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      Hash::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "update", HashUpdate);
  env->SetProtoMethod(t, "digest", HashDigest);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Hash"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}

Hash::~Hash() {
  if (md_value_ != nullptr)
    OPENSSL_clear_free(md_value_, md_len_);
}

void Hash::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  const Hash* orig = nullptr;
  const EVP_MD* md = nullptr;

  if (args[0]->IsObject()) {
    ASSIGN_OR_RETURN_UNWRAP(&orig, args[0].As<Object>());
    md = EVP_MD_CTX_md(orig->mdctx_.get());
  } else {
    const node::Utf8Value hash_type(env->isolate(), args[0]);
    md = EVP_get_digestbyname(*hash_type);
  }

  Maybe<unsigned int> xof_md_len = Nothing<unsigned int>();
  if (!args[1]->IsUndefined()) {
    CHECK(args[1]->IsUint32());
    xof_md_len = Just<unsigned int>(args[1].As<Uint32>()->Value());
  }

  Hash* hash = new Hash(env, args.This());
  if (md == nullptr || !hash->HashInit(md, xof_md_len)) {
    return ThrowCryptoError(env, ERR_get_error(),
                            "Digest method not supported");
  }

  if (orig != nullptr &&
      0 >= EVP_MD_CTX_copy(hash->mdctx_.get(), orig->mdctx_.get())) {
    return ThrowCryptoError(env, ERR_get_error(), "Digest copy error");
  }
}


bool Hash::HashInit(const EVP_MD* md, Maybe<unsigned int> xof_md_len) {
  mdctx_.reset(EVP_MD_CTX_new());
  if (!mdctx_ || EVP_DigestInit_ex(mdctx_.get(), md, nullptr) <= 0) {
    mdctx_.reset();
    return false;
  }

  md_len_ = EVP_MD_size(md);
  if (xof_md_len.IsJust() && xof_md_len.FromJust() != md_len_) {
    // This is a little hack to cause createHash to fail when an incorrect
    // hashSize option was passed for a non-XOF hash function.
    if ((EVP_MD_flags(md) & EVP_MD_FLAG_XOF) == 0) {
      EVPerr(EVP_F_EVP_DIGESTFINALXOF, EVP_R_NOT_XOF_OR_INVALID_LENGTH);
      return false;
    }
    md_len_ = xof_md_len.FromJust();
  }

  return true;
}


bool Hash::HashUpdate(const char* data, int len) {
  if (!mdctx_)
    return false;
  EVP_DigestUpdate(mdctx_.get(), data, len);
  return true;
}


void Hash::HashUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Hash>(args, [](Hash* hash, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    bool r = hash->HashUpdate(data, size);
    args.GetReturnValue().Set(r);
  });
}


void Hash::HashDigest(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  Hash* hash;
  ASSIGN_OR_RETURN_UNWRAP(&hash, args.Holder());

  enum encoding encoding = BUFFER;
  if (args.Length() >= 1) {
    encoding = ParseEncoding(env->isolate(), args[0], BUFFER);
  }

  // TODO(tniessen): SHA3_squeeze does not work for zero-length outputs on all
  // platforms and will cause a segmentation fault if called. This workaround
  // causes hash.digest() to correctly return an empty buffer / string.
  // See https://github.com/openssl/openssl/issues/9431.
  if (!hash->has_md_ && hash->md_len_ == 0) {
    hash->has_md_ = true;
  }

  if (!hash->has_md_) {
    // Some hash algorithms such as SHA3 do not support calling
    // EVP_DigestFinal_ex more than once, however, Hash._flush
    // and Hash.digest can both be used to retrieve the digest,
    // so we need to cache it.
    // See https://github.com/nodejs/node/issues/28245.

    hash->md_value_ = MallocOpenSSL<unsigned char>(hash->md_len_);

    size_t default_len = EVP_MD_CTX_size(hash->mdctx_.get());
    int ret;
    if (hash->md_len_ == default_len) {
      ret = EVP_DigestFinal_ex(hash->mdctx_.get(), hash->md_value_,
                               &hash->md_len_);
    } else {
      ret = EVP_DigestFinalXOF(hash->mdctx_.get(), hash->md_value_,
                               hash->md_len_);
    }

    if (ret != 1) {
      OPENSSL_free(hash->md_value_);
      hash->md_value_ = nullptr;
      return ThrowCryptoError(env, ERR_get_error());
    }

    hash->has_md_ = true;
  }

  Local<Value> error;
  MaybeLocal<Value> rc =
      StringBytes::Encode(env->isolate(),
                          reinterpret_cast<const char*>(hash->md_value_),
                          hash->md_len_,
                          encoding,
                          &error);
  if (rc.IsEmpty()) {
    CHECK(!error.IsEmpty());
    env->isolate()->ThrowException(error);
    return;
  }
  args.GetReturnValue().Set(rc.ToLocalChecked());
}


SignBase::Error SignBase::Init(const char* sign_type) {
  CHECK_NULL(mdctx_);
  // Historically, "dss1" and "DSS1" were DSA aliases for SHA-1
  // exposed through the public API.
  if (strcmp(sign_type, "dss1") == 0 ||
      strcmp(sign_type, "DSS1") == 0) {
    sign_type = "SHA1";
  }
  const EVP_MD* md = EVP_get_digestbyname(sign_type);
  if (md == nullptr)
    return kSignUnknownDigest;

  mdctx_.reset(EVP_MD_CTX_new());
  if (!mdctx_ || !EVP_DigestInit_ex(mdctx_.get(), md, nullptr)) {
    mdctx_.reset();
    return kSignInit;
  }

  return kSignOk;
}


SignBase::Error SignBase::Update(const char* data, int len) {
  if (mdctx_ == nullptr)
    return kSignNotInitialised;
  if (!EVP_DigestUpdate(mdctx_.get(), data, len))
    return kSignUpdate;
  return kSignOk;
}


void CheckThrow(Environment* env, SignBase::Error error) {
  HandleScope scope(env->isolate());

  switch (error) {
    case SignBase::Error::kSignUnknownDigest:
      return env->ThrowError("Unknown message digest");

    case SignBase::Error::kSignNotInitialised:
      return env->ThrowError("Not initialised");

    case SignBase::Error::kSignMalformedSignature:
      return env->ThrowError("Malformed signature");

    case SignBase::Error::kSignInit:
    case SignBase::Error::kSignUpdate:
    case SignBase::Error::kSignPrivateKey:
    case SignBase::Error::kSignPublicKey:
      {
        unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
        if (err)
          return ThrowCryptoError(env, err);
        switch (error) {
          case SignBase::Error::kSignInit:
            return env->ThrowError("EVP_SignInit_ex failed");
          case SignBase::Error::kSignUpdate:
            return env->ThrowError("EVP_SignUpdate failed");
          case SignBase::Error::kSignPrivateKey:
            return env->ThrowError("PEM_read_bio_PrivateKey failed");
          case SignBase::Error::kSignPublicKey:
            return env->ThrowError("PEM_read_bio_PUBKEY failed");
          default:
            ABORT();
        }
      }

    case SignBase::Error::kSignOk:
      return;
  }
}

SignBase::SignBase(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap) {
}

void SignBase::CheckThrow(SignBase::Error error) {
  node::crypto::CheckThrow(env(), error);
}

static bool ApplyRSAOptions(const ManagedEVPPKey& pkey,
                            EVP_PKEY_CTX* pkctx,
                            int padding,
                            const Maybe<int>& salt_len) {
  if (EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA ||
      EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA2 ||
      EVP_PKEY_id(pkey.get()) == EVP_PKEY_RSA_PSS) {
    if (EVP_PKEY_CTX_set_rsa_padding(pkctx, padding) <= 0)
      return false;
    if (padding == RSA_PKCS1_PSS_PADDING && salt_len.IsJust()) {
      if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, salt_len.FromJust()) <= 0)
        return false;
    }
  }

  return true;
}


Sign::Sign(Environment* env, Local<Object> wrap) : SignBase(env, wrap) {
  MakeWeak();
}

void Sign::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      SignBase::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "init", SignInit);
  env->SetProtoMethod(t, "update", SignUpdate);
  env->SetProtoMethod(t, "sign", SignFinal);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Sign"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Sign::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Sign(env, args.This());
}


void Sign::SignInit(const FunctionCallbackInfo<Value>& args) {
  Sign* sign;
  ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder());

  const node::Utf8Value sign_type(args.GetIsolate(), args[0]);
  sign->CheckThrow(sign->Init(*sign_type));
}


void Sign::SignUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Sign>(args, [](Sign* sign, const FunctionCallbackInfo<Value>& args,
                        const char* data, size_t size) {
    Error err = sign->Update(data, size);
    sign->CheckThrow(err);
  });
}

static int GetDefaultSignPadding(const ManagedEVPPKey& key) {
  return EVP_PKEY_id(key.get()) == EVP_PKEY_RSA_PSS ? RSA_PKCS1_PSS_PADDING :
                                                      RSA_PKCS1_PADDING;
}

static const unsigned int kNoDsaSignature = static_cast<unsigned int>(-1);

// Returns the maximum size of each of the integers (r, s) of the DSA signature.
static unsigned int GetBytesOfRS(const ManagedEVPPKey& pkey) {
  int bits, base_id = EVP_PKEY_base_id(pkey.get());

  if (base_id == EVP_PKEY_DSA) {
    DSA* dsa_key = EVP_PKEY_get0_DSA(pkey.get());
    // Both r and s are computed mod q, so their width is limited by that of q.
    bits = BN_num_bits(DSA_get0_q(dsa_key));
  } else if (base_id == EVP_PKEY_EC) {
    EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(pkey.get());
    const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key);
    bits = EC_GROUP_order_bits(ec_group);
  } else {
    return kNoDsaSignature;
  }

  return (bits + 7) / 8;
}

static AllocatedBuffer ConvertSignatureToP1363(Environment* env,
                                               const ManagedEVPPKey& pkey,
                                               AllocatedBuffer&& signature) {
  unsigned int n = GetBytesOfRS(pkey);
  if (n == kNoDsaSignature)
    return std::move(signature);

  const unsigned char* sig_data =
      reinterpret_cast<unsigned char*>(signature.data());

  ECDSASigPointer asn1_sig(d2i_ECDSA_SIG(nullptr, &sig_data, signature.size()));
  if (!asn1_sig)
    return AllocatedBuffer();

  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, 2 * n);
  unsigned char* data = reinterpret_cast<unsigned char*>(buf.data());

  const BIGNUM* r = ECDSA_SIG_get0_r(asn1_sig.get());
  const BIGNUM* s = ECDSA_SIG_get0_s(asn1_sig.get());
  CHECK_EQ(n, static_cast<unsigned int>(BN_bn2binpad(r, data, n)));
  CHECK_EQ(n, static_cast<unsigned int>(BN_bn2binpad(s, data + n, n)));

  return buf;
}

static ByteSource ConvertSignatureToDER(
      const ManagedEVPPKey& pkey,
      const ArrayBufferViewContents<char>& signature) {
  unsigned int n = GetBytesOfRS(pkey);
  if (n == kNoDsaSignature)
    return ByteSource::Foreign(signature.data(), signature.length());

  const unsigned char* sig_data =
      reinterpret_cast<const  unsigned char*>(signature.data());

  if (signature.length() != 2 * n)
    return ByteSource();

  ECDSASigPointer asn1_sig(ECDSA_SIG_new());
  CHECK(asn1_sig);
  BIGNUM* r = BN_new();
  CHECK_NOT_NULL(r);
  BIGNUM* s = BN_new();
  CHECK_NOT_NULL(s);
  CHECK_EQ(r, BN_bin2bn(sig_data, n, r));
  CHECK_EQ(s, BN_bin2bn(sig_data + n, n, s));
  CHECK_EQ(1, ECDSA_SIG_set0(asn1_sig.get(), r, s));

  unsigned char* data = nullptr;
  int len = i2d_ECDSA_SIG(asn1_sig.get(), &data);

  if (len <= 0)
    return ByteSource();

  CHECK_NOT_NULL(data);

  return ByteSource::Allocated(reinterpret_cast<char*>(data), len);
}

static AllocatedBuffer Node_SignFinal(Environment* env,
                                      EVPMDPointer&& mdctx,
                                      const ManagedEVPPKey& pkey,
                                      int padding,
                                      Maybe<int> pss_salt_len) {
  unsigned char m[EVP_MAX_MD_SIZE];
  unsigned int m_len;

  if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
    return AllocatedBuffer();

  int signed_sig_len = EVP_PKEY_size(pkey.get());
  CHECK_GE(signed_sig_len, 0);
  size_t sig_len = static_cast<size_t>(signed_sig_len);
  AllocatedBuffer sig = AllocatedBuffer::AllocateManaged(env, sig_len);

  EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (pkctx &&
      EVP_PKEY_sign_init(pkctx.get()) > 0 &&
      ApplyRSAOptions(pkey, pkctx.get(), padding, pss_salt_len) &&
      EVP_PKEY_CTX_set_signature_md(pkctx.get(),
                                    EVP_MD_CTX_md(mdctx.get())) > 0 &&
      EVP_PKEY_sign(pkctx.get(),
                    reinterpret_cast<unsigned char*>(sig.data()),
                    &sig_len,
                    m,
                    m_len) > 0) {
    sig.Resize(sig_len);
    return sig;
  }

  return AllocatedBuffer();
}

static inline bool ValidateDSAParameters(EVP_PKEY* key) {
#ifdef NODE_FIPS_MODE
  /* Validate DSA2 parameters from FIPS 186-4 */
  if (FIPS_mode() && EVP_PKEY_DSA == EVP_PKEY_base_id(key)) {
    DSA* dsa = EVP_PKEY_get0_DSA(key);
    const BIGNUM* p;
    DSA_get0_pqg(dsa, &p, nullptr, nullptr);
    size_t L = BN_num_bits(p);
    const BIGNUM* q;
    DSA_get0_pqg(dsa, nullptr, &q, nullptr);
    size_t N = BN_num_bits(q);

    return (L == 1024 && N == 160) ||
           (L == 2048 && N == 224) ||
           (L == 2048 && N == 256) ||
           (L == 3072 && N == 256);
  }
#endif  // NODE_FIPS_MODE

  return true;
}

Sign::SignResult Sign::SignFinal(
    const ManagedEVPPKey& pkey,
    int padding,
    const Maybe<int>& salt_len,
    DSASigEnc dsa_sig_enc) {
  if (!mdctx_)
    return SignResult(kSignNotInitialised);

  EVPMDPointer mdctx = std::move(mdctx_);

  if (!ValidateDSAParameters(pkey.get()))
    return SignResult(kSignPrivateKey);

  AllocatedBuffer buffer =
      Node_SignFinal(env(), std::move(mdctx), pkey, padding, salt_len);
  Error error = buffer.data() == nullptr ? kSignPrivateKey : kSignOk;
  if (error == kSignOk && dsa_sig_enc == kSigEncP1363) {
    buffer = ConvertSignatureToP1363(env(), pkey, std::move(buffer));
    CHECK_NOT_NULL(buffer.data());
  }
  return SignResult(error, std::move(buffer));
}


void Sign::SignFinal(const FunctionCallbackInfo<Value>& args) {
  Sign* sign;
  ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true);
  if (!key)
    return;

  int padding = GetDefaultSignPadding(key);
  if (!args[offset]->IsUndefined()) {
    CHECK(args[offset]->IsInt32());
    padding = args[offset].As<Int32>()->Value();
  }

  Maybe<int> salt_len = Nothing<int>();
  if (!args[offset + 1]->IsUndefined()) {
    CHECK(args[offset + 1]->IsInt32());
    salt_len = Just<int>(args[offset + 1].As<Int32>()->Value());
  }

  CHECK(args[offset + 2]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 2].As<Int32>()->Value());

  SignResult ret = sign->SignFinal(
      key,
      padding,
      salt_len,
      dsa_sig_enc);

  if (ret.error != kSignOk)
    return sign->CheckThrow(ret.error);

  args.GetReturnValue().Set(ret.signature.ToBuffer().ToLocalChecked());
}

void SignOneShot(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPrivateKeyFromJs(args, &offset, true);
  if (!key)
    return;

  if (!ValidateDSAParameters(key.get()))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  ArrayBufferViewContents<char> data(args[offset]);

  const EVP_MD* md;
  if (args[offset + 1]->IsNullOrUndefined()) {
    md = nullptr;
  } else {
    const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 1]);
    md = EVP_get_digestbyname(*sign_type);
    if (md == nullptr)
      return CheckThrow(env, SignBase::Error::kSignUnknownDigest);
  }

  int rsa_padding = GetDefaultSignPadding(key);
  if (!args[offset + 2]->IsUndefined()) {
    CHECK(args[offset + 2]->IsInt32());
    rsa_padding = args[offset + 2].As<Int32>()->Value();
  }

  Maybe<int> rsa_salt_len = Nothing<int>();
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsInt32());
    rsa_salt_len = Just<int>(args[offset + 3].As<Int32>()->Value());
  }

  CHECK(args[offset + 4]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 4].As<Int32>()->Value());

  EVP_PKEY_CTX* pkctx = nullptr;
  EVPMDPointer mdctx(EVP_MD_CTX_new());
  if (!mdctx ||
      !EVP_DigestSignInit(mdctx.get(), &pkctx, md, nullptr, key.get())) {
    return CheckThrow(env, SignBase::Error::kSignInit);
  }

  if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  const unsigned char* input =
    reinterpret_cast<const unsigned char*>(data.data());
  size_t sig_len;
  if (!EVP_DigestSign(mdctx.get(), nullptr, &sig_len, input, data.length()))
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);

  AllocatedBuffer signature = AllocatedBuffer::AllocateManaged(env, sig_len);
  if (!EVP_DigestSign(mdctx.get(),
                      reinterpret_cast<unsigned char*>(signature.data()),
                      &sig_len,
                      input,
                      data.length())) {
    return CheckThrow(env, SignBase::Error::kSignPrivateKey);
  }

  signature.Resize(sig_len);

  if (dsa_sig_enc == kSigEncP1363) {
    signature = ConvertSignatureToP1363(env, key, std::move(signature));
  }

  args.GetReturnValue().Set(signature.ToBuffer().ToLocalChecked());
}

Verify::Verify(Environment* env, Local<Object> wrap)
  : SignBase(env, wrap) {
  MakeWeak();
}

void Verify::Initialize(Environment* env, Local<Object> target) {
  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);

  t->InstanceTemplate()->SetInternalFieldCount(
      SignBase::kInternalFieldCount);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  env->SetProtoMethod(t, "init", VerifyInit);
  env->SetProtoMethod(t, "update", VerifyUpdate);
  env->SetProtoMethod(t, "verify", VerifyFinal);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "Verify"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}


void Verify::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  new Verify(env, args.This());
}


void Verify::VerifyInit(const FunctionCallbackInfo<Value>& args) {
  Verify* verify;
  ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder());

  const node::Utf8Value verify_type(args.GetIsolate(), args[0]);
  verify->CheckThrow(verify->Init(*verify_type));
}


void Verify::VerifyUpdate(const FunctionCallbackInfo<Value>& args) {
  Decode<Verify>(args, [](Verify* verify,
                          const FunctionCallbackInfo<Value>& args,
                          const char* data, size_t size) {
    Error err = verify->Update(data, size);
    verify->CheckThrow(err);
  });
}


SignBase::Error Verify::VerifyFinal(const ManagedEVPPKey& pkey,
                                    const ByteSource& sig,
                                    int padding,
                                    const Maybe<int>& saltlen,
                                    bool* verify_result) {
  if (!mdctx_)
    return kSignNotInitialised;

  unsigned char m[EVP_MAX_MD_SIZE];
  unsigned int m_len;
  *verify_result = false;
  EVPMDPointer mdctx = std::move(mdctx_);

  if (!EVP_DigestFinal_ex(mdctx.get(), m, &m_len))
    return kSignPublicKey;

  EVPKeyCtxPointer pkctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (pkctx &&
      EVP_PKEY_verify_init(pkctx.get()) > 0 &&
      ApplyRSAOptions(pkey, pkctx.get(), padding, saltlen) &&
      EVP_PKEY_CTX_set_signature_md(pkctx.get(),
                                    EVP_MD_CTX_md(mdctx.get())) > 0) {
    const unsigned char* s = reinterpret_cast<const unsigned char*>(sig.get());
    const int r = EVP_PKEY_verify(pkctx.get(), s, sig.size(), m, m_len);
    *verify_result = r == 1;
  }

  return kSignOk;
}


void Verify::VerifyFinal(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;

  Verify* verify;
  ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder());

  unsigned int offset = 0;
  ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!pkey)
    return;

  ArrayBufferViewContents<char> hbuf(args[offset]);

  int padding = GetDefaultSignPadding(pkey);
  if (!args[offset + 1]->IsUndefined()) {
    CHECK(args[offset + 1]->IsInt32());
    padding = args[offset + 1].As<Int32>()->Value();
  }

  Maybe<int> salt_len = Nothing<int>();
  if (!args[offset + 2]->IsUndefined()) {
    CHECK(args[offset + 2]->IsInt32());
    salt_len = Just<int>(args[offset + 2].As<Int32>()->Value());
  }

  CHECK(args[offset + 3]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 3].As<Int32>()->Value());

  ByteSource signature = ByteSource::Foreign(hbuf.data(), hbuf.length());
  if (dsa_sig_enc == kSigEncP1363) {
    signature = ConvertSignatureToDER(pkey, hbuf);
    if (signature.get() == nullptr)
      return verify->CheckThrow(Error::kSignMalformedSignature);
  }

  bool verify_result;
  Error err = verify->VerifyFinal(pkey, signature, padding,
                                  salt_len, &verify_result);
  if (err != kSignOk)
    return verify->CheckThrow(err);
  args.GetReturnValue().Set(verify_result);
}

void VerifyOneShot(const FunctionCallbackInfo<Value>& args) {
  ClearErrorOnReturn clear_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey key = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!key)
    return;

  ArrayBufferViewContents<char> sig(args[offset]);

  ArrayBufferViewContents<char> data(args[offset + 1]);

  const EVP_MD* md;
  if (args[offset + 2]->IsNullOrUndefined()) {
    md = nullptr;
  } else {
    const node::Utf8Value sign_type(args.GetIsolate(), args[offset + 2]);
    md = EVP_get_digestbyname(*sign_type);
    if (md == nullptr)
      return CheckThrow(env, SignBase::Error::kSignUnknownDigest);
  }

  int rsa_padding = GetDefaultSignPadding(key);
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsInt32());
    rsa_padding = args[offset + 3].As<Int32>()->Value();
  }

  Maybe<int> rsa_salt_len = Nothing<int>();
  if (!args[offset + 4]->IsUndefined()) {
    CHECK(args[offset + 4]->IsInt32());
    rsa_salt_len = Just<int>(args[offset + 4].As<Int32>()->Value());
  }

  CHECK(args[offset + 5]->IsInt32());
  DSASigEnc dsa_sig_enc =
      static_cast<DSASigEnc>(args[offset + 5].As<Int32>()->Value());

  EVP_PKEY_CTX* pkctx = nullptr;
  EVPMDPointer mdctx(EVP_MD_CTX_new());
  if (!mdctx ||
      !EVP_DigestVerifyInit(mdctx.get(), &pkctx, md, nullptr, key.get())) {
    return CheckThrow(env, SignBase::Error::kSignInit);
  }

  if (!ApplyRSAOptions(key, pkctx, rsa_padding, rsa_salt_len))
    return CheckThrow(env, SignBase::Error::kSignPublicKey);

  ByteSource sig_bytes = ByteSource::Foreign(sig.data(), sig.length());
  if (dsa_sig_enc == kSigEncP1363) {
    sig_bytes = ConvertSignatureToDER(key, sig);
    if (!sig_bytes)
      return CheckThrow(env, SignBase::Error::kSignMalformedSignature);
  }

  bool verify_result;
  const int r = EVP_DigestVerify(
    mdctx.get(),
    reinterpret_cast<const unsigned char*>(sig_bytes.get()),
    sig_bytes.size(),
    reinterpret_cast<const unsigned char*>(data.data()),
    data.length());
  switch (r) {
    case 1:
      verify_result = true;
      break;
    case 0:
      verify_result = false;
      break;
    default:
      return CheckThrow(env, SignBase::Error::kSignPublicKey);
  }

  args.GetReturnValue().Set(verify_result);
}

template <PublicKeyCipher::Operation operation,
          PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
          PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
bool PublicKeyCipher::Cipher(Environment* env,
                             const ManagedEVPPKey& pkey,
                             int padding,
                             const EVP_MD* digest,
                             const void* oaep_label,
                             size_t oaep_label_len,
                             const unsigned char* data,
                             int len,
                             AllocatedBuffer* out) {
  EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr));
  if (!ctx)
    return false;
  if (EVP_PKEY_cipher_init(ctx.get()) <= 0)
    return false;
  if (EVP_PKEY_CTX_set_rsa_padding(ctx.get(), padding) <= 0)
    return false;

  if (digest != nullptr) {
    if (EVP_PKEY_CTX_set_rsa_oaep_md(ctx.get(), digest) <= 0)
      return false;
  }

  if (oaep_label_len != 0) {
    // OpenSSL takes ownership of the label, so we need to create a copy.
    void* label = OPENSSL_memdup(oaep_label, oaep_label_len);
    CHECK_NOT_NULL(label);
    if (0 >= EVP_PKEY_CTX_set0_rsa_oaep_label(ctx.get(),
                reinterpret_cast<unsigned char*>(label),
                                      oaep_label_len)) {
      OPENSSL_free(label);
      return false;
    }
  }

  size_t out_len = 0;
  if (EVP_PKEY_cipher(ctx.get(), nullptr, &out_len, data, len) <= 0)
    return false;

  *out = AllocatedBuffer::AllocateManaged(env, out_len);

  if (EVP_PKEY_cipher(ctx.get(),
                      reinterpret_cast<unsigned char*>(out->data()),
                      &out_len,
                      data,
                      len) <= 0) {
    return false;
  }

  out->Resize(out_len);
  return true;
}


template <PublicKeyCipher::Operation operation,
          PublicKeyCipher::EVP_PKEY_cipher_init_t EVP_PKEY_cipher_init,
          PublicKeyCipher::EVP_PKEY_cipher_t EVP_PKEY_cipher>
void PublicKeyCipher::Cipher(const FunctionCallbackInfo<Value>& args) {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  unsigned int offset = 0;
  ManagedEVPPKey pkey = GetPublicOrPrivateKeyFromJs(args, &offset);
  if (!pkey)
    return;

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[offset], "Data");
  ArrayBufferViewContents<unsigned char> buf(args[offset]);

  uint32_t padding;
  if (!args[offset + 1]->Uint32Value(env->context()).To(&padding)) return;

  const node::Utf8Value oaep_str(env->isolate(), args[offset + 2]);
  const char* oaep_hash = args[offset + 2]->IsString() ? *oaep_str : nullptr;
  const EVP_MD* digest = nullptr;
  if (oaep_hash != nullptr) {
    digest = EVP_get_digestbyname(oaep_hash);
    if (digest == nullptr)
      return THROW_ERR_OSSL_EVP_INVALID_DIGEST(env);
  }

  ArrayBufferViewContents<unsigned char> oaep_label;
  if (!args[offset + 3]->IsUndefined()) {
    CHECK(args[offset + 3]->IsArrayBufferView());
    oaep_label.Read(args[offset + 3].As<ArrayBufferView>());
  }

  AllocatedBuffer out;

  bool r = Cipher<operation, EVP_PKEY_cipher_init, EVP_PKEY_cipher>(
      env,
      pkey,
      padding,
      digest,
      oaep_label.data(),
      oaep_label.length(),
      buf.data(),
      buf.length(),
      &out);

  if (!r)
    return ThrowCryptoError(env, ERR_get_error());

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}

DiffieHellman::DiffieHellman(Environment* env, Local<Object> wrap)
    : BaseObject(env, wrap), verifyError_(0) {
  MakeWeak();
}

void DiffieHellman::Initialize(Environment* env, Local<Object> target) {
  auto make = [&] (Local<String> name, FunctionCallback callback) {
    Local<FunctionTemplate> t = env->NewFunctionTemplate(callback);

    const PropertyAttribute attributes =
        static_cast<PropertyAttribute>(ReadOnly | DontDelete);

    t->InstanceTemplate()->SetInternalFieldCount(
        DiffieHellman::kInternalFieldCount);
    t->Inherit(BaseObject::GetConstructorTemplate(env));

    env->SetProtoMethod(t, "generateKeys", GenerateKeys);
    env->SetProtoMethod(t, "computeSecret", ComputeSecret);
    env->SetProtoMethodNoSideEffect(t, "getPrime", GetPrime);
    env->SetProtoMethodNoSideEffect(t, "getGenerator", GetGenerator);
    env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey);
    env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey);
    env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
    env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);

    Local<FunctionTemplate> verify_error_getter_templ =
        FunctionTemplate::New(env->isolate(),
                              DiffieHellman::VerifyErrorGetter,
                              Local<Value>(),
                              Signature::New(env->isolate(), t),
                              /* length */ 0,
                              ConstructorBehavior::kThrow,
                              SideEffectType::kHasNoSideEffect);

    t->InstanceTemplate()->SetAccessorProperty(
        env->verify_error_string(),
        verify_error_getter_templ,
        Local<FunctionTemplate>(),
        attributes);

    target->Set(env->context(),
                name,
                t->GetFunction(env->context()).ToLocalChecked()).Check();
  };

  make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellman"), New);
  make(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellmanGroup"),
       DiffieHellmanGroup);
}


bool DiffieHellman::Init(int primeLength, int g) {
  dh_.reset(DH_new());
  if (!DH_generate_parameters_ex(dh_.get(), primeLength, g, nullptr))
    return false;
  return VerifyContext();
}


bool DiffieHellman::Init(const char* p, int p_len, int g) {
  dh_.reset(DH_new());
  if (p_len <= 0) {
    BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
    return false;
  }
  if (g <= 1) {
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_p =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, nullptr);
  BIGNUM* bn_g = BN_new();
  if (!BN_set_word(bn_g, g) ||
      !DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) {
    BN_free(bn_p);
    BN_free(bn_g);
    return false;
  }
  return VerifyContext();
}


bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) {
  dh_.reset(DH_new());
  if (p_len <= 0) {
    BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
    return false;
  }
  if (g_len <= 0) {
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_g =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(g), g_len, nullptr);
  if (BN_is_zero(bn_g) || BN_is_one(bn_g)) {
    BN_free(bn_g);
    DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
    return false;
  }
  BIGNUM* bn_p =
      BN_bin2bn(reinterpret_cast<const unsigned char*>(p), p_len, nullptr);
  if (!DH_set0_pqg(dh_.get(), bn_p, nullptr, bn_g)) {
    BN_free(bn_p);
    BN_free(bn_g);
    return false;
  }
  return VerifyContext();
}

inline const modp_group* FindDiffieHellmanGroup(const char* name) {
  for (const modp_group& group : modp_groups) {
    if (StringEqualNoCase(name, group.name))
      return &group;
  }
  return nullptr;
}

void DiffieHellman::DiffieHellmanGroup(
    const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  DiffieHellman* diffieHellman = new DiffieHellman(env, args.This());

  CHECK_EQ(args.Length(), 1);
  THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "Group name");

  bool initialized = false;

  const node::Utf8Value group_name(env->isolate(), args[0]);
  const modp_group* group = FindDiffieHellmanGroup(*group_name);
  if (group == nullptr)
    return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env);

  initialized = diffieHellman->Init(group->prime,
                                    group->prime_size,
                                    group->gen);
  if (!initialized)
    env->ThrowError("Initialization failed");
}


void DiffieHellman::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  DiffieHellman* diffieHellman =
      new DiffieHellman(env, args.This());
  bool initialized = false;

  if (args.Length() == 2) {
    if (args[0]->IsInt32()) {
      if (args[1]->IsInt32()) {
        initialized = diffieHellman->Init(args[0].As<Int32>()->Value(),
                                          args[1].As<Int32>()->Value());
      }
    } else {
      ArrayBufferViewContents<char> arg0(args[0]);
      if (args[1]->IsInt32()) {
        initialized = diffieHellman->Init(arg0.data(),
                                          arg0.length(),
                                          args[1].As<Int32>()->Value());
      } else {
        ArrayBufferViewContents<char> arg1(args[1]);
        initialized = diffieHellman->Init(arg0.data(), arg0.length(),
                                          arg1.data(), arg1.length());
      }
    }
  }

  if (!initialized) {
    return ThrowCryptoError(env, ERR_get_error(), "Initialization failed");
  }
}


void DiffieHellman::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  if (!DH_generate_key(diffieHellman->dh_.get())) {
    return ThrowCryptoError(env, ERR_get_error(), "Key generation failed");
  }

  const BIGNUM* pub_key;
  DH_get0_key(diffieHellman->dh_.get(), &pub_key, nullptr);
  const int size = BN_num_bytes(pub_key);
  CHECK_GE(size, 0);
  AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(size,
           BN_bn2binpad(
               pub_key, reinterpret_cast<unsigned char*>(data.data()), size));
  args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked());
}


void DiffieHellman::GetField(const FunctionCallbackInfo<Value>& args,
                             const BIGNUM* (*get_field)(const DH*),
                             const char* err_if_null) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* dh;
  ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder());

  const BIGNUM* num = get_field(dh->dh_.get());
  if (num == nullptr) return env->ThrowError(err_if_null);

  const int size = BN_num_bytes(num);
  CHECK_GE(size, 0);
  AllocatedBuffer data = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(
      size,
      BN_bn2binpad(num, reinterpret_cast<unsigned char*>(data.data()), size));
  args.GetReturnValue().Set(data.ToBuffer().ToLocalChecked());
}

void DiffieHellman::GetPrime(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* p;
    DH_get0_pqg(dh, &p, nullptr, nullptr);
    return p;
  }, "p is null");
}


void DiffieHellman::GetGenerator(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* g;
    DH_get0_pqg(dh, nullptr, nullptr, &g);
    return g;
  }, "g is null");
}


void DiffieHellman::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* pub_key;
    DH_get0_key(dh, &pub_key, nullptr);
    return pub_key;
  }, "No public key - did you forget to generate one?");
}


void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  GetField(args, [](const DH* dh) -> const BIGNUM* {
    const BIGNUM* priv_key;
    DH_get0_key(dh, nullptr, &priv_key);
    return priv_key;
  }, "No private key - did you forget to generate one?");
}

static void ZeroPadDiffieHellmanSecret(size_t remainder_size,
                                       AllocatedBuffer* ret) {
  // DH_size returns number of bytes in a prime number.
  // DH_compute_key returns number of bytes in a remainder of exponent, which
  // may have less bytes than a prime number. Therefore add 0-padding to the
  // allocated buffer.
  const size_t prime_size = ret->size();
  if (remainder_size != prime_size) {
    CHECK_LT(remainder_size, prime_size);
    const size_t padding = prime_size - remainder_size;
    memmove(ret->data() + padding, ret->data(), remainder_size);
    memset(ret->data(), 0, padding);
  }
}

void DiffieHellman::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  ClearErrorOnReturn clear_error_on_return;

  CHECK_EQ(args.Length(), 1);
  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Other party's public key");
  ArrayBufferViewContents<unsigned char> key_buf(args[0].As<ArrayBufferView>());
  BignumPointer key(BN_bin2bn(key_buf.data(), key_buf.length(), nullptr));

  AllocatedBuffer ret =
      AllocatedBuffer::AllocateManaged(env, DH_size(diffieHellman->dh_.get()));

  int size = DH_compute_key(reinterpret_cast<unsigned char*>(ret.data()),
                            key.get(),
                            diffieHellman->dh_.get());

  if (size == -1) {
    int checkResult;
    int checked;

    checked = DH_check_pub_key(diffieHellman->dh_.get(),
                               key.get(),
                               &checkResult);

    if (!checked) {
      return ThrowCryptoError(env, ERR_get_error(), "Invalid Key");
    } else if (checkResult) {
      if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) {
        return env->ThrowError("Supplied key is too small");
      } else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) {
        return env->ThrowError("Supplied key is too large");
      } else {
        return env->ThrowError("Invalid key");
      }
    } else {
      return env->ThrowError("Invalid key");
    }

    UNREACHABLE();
  }

  CHECK_GE(size, 0);
  ZeroPadDiffieHellmanSecret(static_cast<size_t>(size), &ret);

  args.GetReturnValue().Set(ret.ToBuffer().ToLocalChecked());
}

void DiffieHellman::SetKey(const FunctionCallbackInfo<Value>& args,
                           int (*set_field)(DH*, BIGNUM*), const char* what) {
  Environment* env = Environment::GetCurrent(args);

  DiffieHellman* dh;
  ASSIGN_OR_RETURN_UNWRAP(&dh, args.Holder());

  char errmsg[64];

  CHECK_EQ(args.Length(), 1);
  if (!Buffer::HasInstance(args[0])) {
    snprintf(errmsg, sizeof(errmsg), "%s must be a buffer", what);
    return THROW_ERR_INVALID_ARG_TYPE(env, errmsg);
  }

  ArrayBufferViewContents<unsigned char> buf(args[0].As<ArrayBufferView>());
  BIGNUM* num =
      BN_bin2bn(buf.data(), buf.length(), nullptr);
  CHECK_NOT_NULL(num);
  CHECK_EQ(1, set_field(dh->dh_.get(), num));
}


void DiffieHellman::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
  SetKey(args,
         [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, num, nullptr); },
         "Public key");
}

void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  SetKey(args,
         [](DH* dh, BIGNUM* num) { return DH_set0_key(dh, nullptr, num); },
         "Private key");
}


void DiffieHellman::VerifyErrorGetter(const FunctionCallbackInfo<Value>& args) {
  HandleScope scope(args.GetIsolate());

  DiffieHellman* diffieHellman;
  ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder());

  args.GetReturnValue().Set(diffieHellman->verifyError_);
}


bool DiffieHellman::VerifyContext() {
  int codes;
  if (!DH_check(dh_.get(), &codes))
    return false;
  verifyError_ = codes;
  return true;
}


void ECDH::Initialize(Environment* env, Local<Object> target) {
  HandleScope scope(env->isolate());

  Local<FunctionTemplate> t = env->NewFunctionTemplate(New);
  t->Inherit(BaseObject::GetConstructorTemplate(env));

  t->InstanceTemplate()->SetInternalFieldCount(ECDH::kInternalFieldCount);

  env->SetProtoMethod(t, "generateKeys", GenerateKeys);
  env->SetProtoMethod(t, "computeSecret", ComputeSecret);
  env->SetProtoMethodNoSideEffect(t, "getPublicKey", GetPublicKey);
  env->SetProtoMethodNoSideEffect(t, "getPrivateKey", GetPrivateKey);
  env->SetProtoMethod(t, "setPublicKey", SetPublicKey);
  env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey);

  target->Set(env->context(),
              FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH"),
              t->GetFunction(env->context()).ToLocalChecked()).Check();
}

ECDH::ECDH(Environment* env, Local<Object> wrap, ECKeyPointer&& key)
    : BaseObject(env, wrap),
    key_(std::move(key)),
    group_(EC_KEY_get0_group(key_.get())) {
  MakeWeak();
  CHECK_NOT_NULL(group_);
}

ECDH::~ECDH() {}

void ECDH::New(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  MarkPopErrorOnReturn mark_pop_error_on_return;

  // TODO(indutny): Support raw curves?
  CHECK(args[0]->IsString());
  node::Utf8Value curve(env->isolate(), args[0]);

  int nid = OBJ_sn2nid(*curve);
  if (nid == NID_undef)
    return THROW_ERR_INVALID_ARG_VALUE(env,
        "First argument should be a valid curve name");

  ECKeyPointer key(EC_KEY_new_by_curve_name(nid));
  if (!key)
    return env->ThrowError("Failed to create EC_KEY using curve name");

  new ECDH(env, args.This(), std::move(key));
}


void ECDH::GenerateKeys(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  if (!EC_KEY_generate_key(ecdh->key_.get()))
    return env->ThrowError("Failed to generate EC_KEY");
}


ECPointPointer ECDH::BufferToPoint(Environment* env,
                                   const EC_GROUP* group,
                                   Local<Value> buf) {
  int r;

  ECPointPointer pub(EC_POINT_new(group));
  if (!pub) {
    env->ThrowError("Failed to allocate EC_POINT for a public key");
    return pub;
  }

  ArrayBufferViewContents<unsigned char> input(buf);
  r = EC_POINT_oct2point(
      group,
      pub.get(),
      input.data(),
      input.length(),
      nullptr);
  if (!r)
    return ECPointPointer();

  return pub;
}


void ECDH::ComputeSecret(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Data");

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  MarkPopErrorOnReturn mark_pop_error_on_return;

  if (!ecdh->IsKeyPairValid())
    return env->ThrowError("Invalid key pair");

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          ecdh->group_,
                          args[0]));
  if (!pub) {
    args.GetReturnValue().Set(
        FIXED_ONE_BYTE_STRING(env->isolate(),
        "ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY"));
    return;
  }

  // NOTE: field_size is in bits
  int field_size = EC_GROUP_get_degree(ecdh->group_);
  size_t out_len = (field_size + 7) / 8;
  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, out_len);

  int r = ECDH_compute_key(
      out.data(), out_len, pub.get(), ecdh->key_.get(), nullptr);
  if (!r)
    return env->ThrowError("Failed to compute ECDH key");

  Local<Object> buf = out.ToBuffer().ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void ECDH::GetPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  // Conversion form
  CHECK_EQ(args.Length(), 1);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  const EC_GROUP* group = EC_KEY_get0_group(ecdh->key_.get());
  const EC_POINT* pub = EC_KEY_get0_public_key(ecdh->key_.get());
  if (pub == nullptr)
    return env->ThrowError("Failed to get ECDH public key");

  CHECK(args[0]->IsUint32());
  uint32_t val = args[0].As<Uint32>()->Value();
  point_conversion_form_t form = static_cast<point_conversion_form_t>(val);

  const char* error;
  Local<Object> buf;
  if (!ECPointToBuffer(env, group, pub, form, &error).ToLocal(&buf))
    return env->ThrowError(error);
  args.GetReturnValue().Set(buf);
}


void ECDH::GetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  const BIGNUM* b = EC_KEY_get0_private_key(ecdh->key_.get());
  if (b == nullptr)
    return env->ThrowError("Failed to get ECDH private key");

  const int size = BN_num_bytes(b);
  AllocatedBuffer out = AllocatedBuffer::AllocateManaged(env, size);
  CHECK_EQ(size, BN_bn2binpad(b,
                              reinterpret_cast<unsigned char*>(out.data()),
                              size));

  Local<Object> buf = out.ToBuffer().ToLocalChecked();
  args.GetReturnValue().Set(buf);
}


void ECDH::SetPrivateKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Private key");
  ArrayBufferViewContents<unsigned char> priv_buffer(args[0]);

  BignumPointer priv(BN_bin2bn(
      priv_buffer.data(), priv_buffer.length(), nullptr));
  if (!priv)
    return env->ThrowError("Failed to convert Buffer to BN");

  if (!ecdh->IsKeyValidForCurve(priv)) {
    return env->ThrowError("Private key is not valid for specified curve.");
  }

  ECKeyPointer new_key(EC_KEY_dup(ecdh->key_.get()));
  CHECK(new_key);

  int result = EC_KEY_set_private_key(new_key.get(), priv.get());
  priv.reset();

  if (!result) {
    return env->ThrowError("Failed to convert BN to a private key");
  }

  MarkPopErrorOnReturn mark_pop_error_on_return;
  USE(&mark_pop_error_on_return);

  const BIGNUM* priv_key = EC_KEY_get0_private_key(new_key.get());
  CHECK_NOT_NULL(priv_key);

  ECPointPointer pub(EC_POINT_new(ecdh->group_));
  CHECK(pub);

  if (!EC_POINT_mul(ecdh->group_, pub.get(), priv_key,
                    nullptr, nullptr, nullptr)) {
    return env->ThrowError("Failed to generate ECDH public key");
  }

  if (!EC_KEY_set_public_key(new_key.get(), pub.get()))
    return env->ThrowError("Failed to set generated public key");

  EC_KEY_copy(ecdh->key_.get(), new_key.get());
  ecdh->group_ = EC_KEY_get0_group(ecdh->key_.get());
}


void ECDH::SetPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ECDH* ecdh;
  ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder());

  THROW_AND_RETURN_IF_NOT_BUFFER(env, args[0], "Public key");

  MarkPopErrorOnReturn mark_pop_error_on_return;

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          ecdh->group_,
                          args[0]));
  if (!pub)
    return env->ThrowError("Failed to convert Buffer to EC_POINT");

  int r = EC_KEY_set_public_key(ecdh->key_.get(), pub.get());
  if (!r)
    return env->ThrowError("Failed to set EC_POINT as the public key");
}


bool ECDH::IsKeyValidForCurve(const BignumPointer& private_key) {
  CHECK(group_);
  CHECK(private_key);
  // Private keys must be in the range [1, n-1].
  // Ref: Section 3.2.1 - http://www.secg.org/sec1-v2.pdf
  if (BN_cmp(private_key.get(), BN_value_one()) < 0) {
    return false;
  }
  BignumPointer order(BN_new());
  CHECK(order);
  return EC_GROUP_get_order(group_, order.get(), nullptr) &&
         BN_cmp(private_key.get(), order.get()) < 0;
}


bool ECDH::IsKeyPairValid() {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  USE(&mark_pop_error_on_return);
  return 1 == EC_KEY_check_key(key_.get());
}


// TODO(addaleax): If there is an `AsyncWrap`, it currently has no access to
// this object. This makes proper reporting of memory usage impossible.
struct CryptoJob : public ThreadPoolWork {
  std::unique_ptr<AsyncWrap> async_wrap;
  inline explicit CryptoJob(Environment* env) : ThreadPoolWork(env) {}
  inline void AfterThreadPoolWork(int status) final;
  virtual void AfterThreadPoolWork() = 0;
  static inline void Run(std::unique_ptr<CryptoJob> job, Local<Value> wrap);
};


void CryptoJob::AfterThreadPoolWork(int status) {
  CHECK(status == 0 || status == UV_ECANCELED);
  std::unique_ptr<CryptoJob> job(this);
  if (status == UV_ECANCELED) return;
  HandleScope handle_scope(env()->isolate());
  Context::Scope context_scope(env()->context());
  CHECK_EQ(false, async_wrap->persistent().IsWeak());
  AfterThreadPoolWork();
}


void CryptoJob::Run(std::unique_ptr<CryptoJob> job, Local<Value> wrap) {
  CHECK(wrap->IsObject());
  CHECK_NULL(job->async_wrap);
  job->async_wrap.reset(Unwrap<AsyncWrap>(wrap.As<Object>()));
  CHECK_EQ(false, job->async_wrap->persistent().IsWeak());
  job->ScheduleWork();
  job.release();  // Run free, little job!
}


inline void CopyBuffer(Local<Value> buf, std::vector<char>* vec) {
  CHECK(buf->IsArrayBufferView());
  vec->clear();
  vec->resize(buf.As<ArrayBufferView>()->ByteLength());
  buf.As<ArrayBufferView>()->CopyContents(vec->data(), vec->size());
}


struct RandomBytesJob : public CryptoJob {
  unsigned char* data;
  size_t size;
  CryptoErrorVector errors;
  Maybe<int> rc;

  inline explicit RandomBytesJob(Environment* env)
      : CryptoJob(env), rc(Nothing<int>()) {}

  inline void DoThreadPoolWork() override {
    CheckEntropy();  // Ensure that OpenSSL's PRNG is properly seeded.
    rc = Just(RAND_bytes(data, size));
    if (0 == rc.FromJust()) errors.Capture();
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    if (errors.empty()) return Undefined(env()->isolate());
    return errors.ToException(env()).ToLocalChecked();
  }
};


void RandomBytes(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsArrayBufferView());  // buffer; wrap object retains ref.
  CHECK(args[1]->IsUint32());  // offset
  CHECK(args[2]->IsUint32());  // size
  CHECK(args[3]->IsObject() || args[3]->IsUndefined());  // wrap object
  const uint32_t offset = args[1].As<Uint32>()->Value();
  const uint32_t size = args[2].As<Uint32>()->Value();
  CHECK_GE(offset + size, offset);  // Overflow check.
  CHECK_LE(offset + size, Buffer::Length(args[0]));  // Bounds check.
  Environment* env = Environment::GetCurrent(args);
  std::unique_ptr<RandomBytesJob> job(new RandomBytesJob(env));
  job->data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0])) + offset;
  job->size = size;
  if (args[3]->IsObject()) return RandomBytesJob::Run(std::move(job), args[3]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  args.GetReturnValue().Set(job->ToResult());
}


struct PBKDF2Job : public CryptoJob {
  unsigned char* keybuf_data;
  size_t keybuf_size;
  std::vector<char> pass;
  std::vector<char> salt;
  uint32_t iteration_count;
  const EVP_MD* digest;
  Maybe<bool> success;

  inline explicit PBKDF2Job(Environment* env)
      : CryptoJob(env), success(Nothing<bool>()) {}

  inline ~PBKDF2Job() override {
    Cleanse();
  }

  inline void DoThreadPoolWork() override {
    auto salt_data = reinterpret_cast<const unsigned char*>(salt.data());
    const bool ok =
        PKCS5_PBKDF2_HMAC(pass.data(), pass.size(), salt_data, salt.size(),
                          iteration_count, digest, keybuf_size, keybuf_data);
    success = Just(ok);
    Cleanse();
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    return Boolean::New(env()->isolate(), success.FromJust());
  }

  inline void Cleanse() {
    OPENSSL_cleanse(pass.data(), pass.size());
    OPENSSL_cleanse(salt.data(), salt.size());
    pass.clear();
    salt.clear();
  }
};


inline void PBKDF2(const FunctionCallbackInfo<Value>& args) {
  auto rv = args.GetReturnValue();
  Environment* env = Environment::GetCurrent(args);
  CHECK(args[0]->IsArrayBufferView());  // keybuf; wrap object retains ref.
  CHECK(args[1]->IsArrayBufferView());  // pass
  CHECK(args[2]->IsArrayBufferView());  // salt
  CHECK(args[3]->IsUint32());  // iteration_count
  CHECK(args[4]->IsString());  // digest_name
  CHECK(args[5]->IsObject() || args[5]->IsUndefined());  // wrap object
  std::unique_ptr<PBKDF2Job> job(new PBKDF2Job(env));
  job->keybuf_data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0]));
  job->keybuf_size = Buffer::Length(args[0]);
  CopyBuffer(args[1], &job->pass);
  CopyBuffer(args[2], &job->salt);
  job->iteration_count = args[3].As<Uint32>()->Value();
  Utf8Value digest_name(args.GetIsolate(), args[4]);
  job->digest = EVP_get_digestbyname(*digest_name);
  if (job->digest == nullptr) return rv.Set(-1);
  if (args[5]->IsObject()) return PBKDF2Job::Run(std::move(job), args[5]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  rv.Set(job->ToResult());
}


#ifndef OPENSSL_NO_SCRYPT
struct ScryptJob : public CryptoJob {
  unsigned char* keybuf_data;
  size_t keybuf_size;
  std::vector<char> pass;
  std::vector<char> salt;
  uint32_t N;
  uint32_t r;
  uint32_t p;
  uint64_t maxmem;
  CryptoErrorVector errors;

  inline explicit ScryptJob(Environment* env) : CryptoJob(env) {}

  inline ~ScryptJob() override {
    Cleanse();
  }

  inline bool Validate() {
    if (1 == EVP_PBE_scrypt(nullptr, 0, nullptr, 0, N, r, p, maxmem,
                            nullptr, 0)) {
      return true;
    } else {
      // Note: EVP_PBE_scrypt() does not always put errors on the error stack.
      errors.Capture();
      return false;
    }
  }

  inline void DoThreadPoolWork() override {
    auto salt_data = reinterpret_cast<const unsigned char*>(salt.data());
    if (1 != EVP_PBE_scrypt(pass.data(), pass.size(), salt_data, salt.size(),
                            N, r, p, maxmem, keybuf_data, keybuf_size)) {
      errors.Capture();
    }
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> arg = ToResult();
    async_wrap->MakeCallback(env()->ondone_string(), 1, &arg);
  }

  inline Local<Value> ToResult() const {
    if (errors.empty()) return Undefined(env()->isolate());
    return errors.ToException(env()).ToLocalChecked();
  }

  inline void Cleanse() {
    OPENSSL_cleanse(pass.data(), pass.size());
    OPENSSL_cleanse(salt.data(), salt.size());
    pass.clear();
    salt.clear();
  }
};


void Scrypt(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK(args[0]->IsArrayBufferView());  // keybuf; wrap object retains ref.
  CHECK(args[1]->IsArrayBufferView());  // pass
  CHECK(args[2]->IsArrayBufferView());  // salt
  CHECK(args[3]->IsUint32());  // N
  CHECK(args[4]->IsUint32());  // r
  CHECK(args[5]->IsUint32());  // p
  CHECK(args[6]->IsNumber());  // maxmem
  CHECK(args[7]->IsObject() || args[7]->IsUndefined());  // wrap object
  std::unique_ptr<ScryptJob> job(new ScryptJob(env));
  job->keybuf_data = reinterpret_cast<unsigned char*>(Buffer::Data(args[0]));
  job->keybuf_size = Buffer::Length(args[0]);
  CopyBuffer(args[1], &job->pass);
  CopyBuffer(args[2], &job->salt);
  job->N = args[3].As<Uint32>()->Value();
  job->r = args[4].As<Uint32>()->Value();
  job->p = args[5].As<Uint32>()->Value();
  Local<Context> ctx = env->isolate()->GetCurrentContext();
  job->maxmem = static_cast<uint64_t>(args[6]->IntegerValue(ctx).ToChecked());
  if (!job->Validate()) {
    // EVP_PBE_scrypt() does not always put errors on the error stack
    // and therefore ToResult() may or may not return an exception
    // object.  Return a sentinel value to inform JS land it should
    // throw an ERR_CRYPTO_SCRYPT_INVALID_PARAMETER on our behalf.
    auto result = job->ToResult();
    if (result->IsUndefined()) result = Null(args.GetIsolate());
    return args.GetReturnValue().Set(result);
  }
  if (args[7]->IsObject()) return ScryptJob::Run(std::move(job), args[7]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  args.GetReturnValue().Set(job->ToResult());
}
#endif  // OPENSSL_NO_SCRYPT


class KeyPairGenerationConfig {
 public:
  virtual EVPKeyCtxPointer Setup() = 0;
  virtual bool Configure(const EVPKeyCtxPointer& ctx) {
    return true;
  }
  virtual ~KeyPairGenerationConfig() = default;
};

class RSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  RSAKeyPairGenerationConfig(unsigned int modulus_bits, unsigned int exponent)
    : modulus_bits_(modulus_bits), exponent_(exponent) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, nullptr));
  }

  bool Configure(const EVPKeyCtxPointer& ctx) override {
    if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx.get(), modulus_bits_) <= 0)
      return false;

    // 0x10001 is the default RSA exponent.
    if (exponent_ != 0x10001) {
      BignumPointer bn(BN_new());
      CHECK_NOT_NULL(bn.get());
      CHECK(BN_set_word(bn.get(), exponent_));
      // EVP_CTX acceps ownership of bn on success.
      if (EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx.get(), bn.get()) <= 0)
        return false;
      bn.release();
    }

    return true;
  }

 private:
  const unsigned int modulus_bits_;
  const unsigned int exponent_;
};

class RSAPSSKeyPairGenerationConfig : public RSAKeyPairGenerationConfig {
 public:
  RSAPSSKeyPairGenerationConfig(unsigned int modulus_bits,
                                unsigned int exponent,
                                const EVP_MD* md,
                                const EVP_MD* mgf1_md,
                                int saltlen)
    : RSAKeyPairGenerationConfig(modulus_bits, exponent),
      md_(md), mgf1_md_(mgf1_md), saltlen_(saltlen) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA_PSS, nullptr));
  }

  bool Configure(const EVPKeyCtxPointer& ctx) override {
    if (!RSAKeyPairGenerationConfig::Configure(ctx))
      return false;

    if (md_ != nullptr) {
      if (EVP_PKEY_CTX_set_rsa_pss_keygen_md(ctx.get(), md_) <= 0)
        return false;
    }

    if (mgf1_md_ != nullptr) {
     if (EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(ctx.get(), mgf1_md_) <= 0)
       return false;
    }

    if (saltlen_ >= 0) {
      if (EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(ctx.get(), saltlen_) <= 0)
        return false;
    }

    return true;
  }

 private:
  const EVP_MD* md_;
  const EVP_MD* mgf1_md_;
  const int saltlen_;
};

class DSAKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  DSAKeyPairGenerationConfig(unsigned int modulus_bits, int divisor_bits)
    : modulus_bits_(modulus_bits), divisor_bits_(divisor_bits) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, nullptr));
    if (!param_ctx)
      return nullptr;

    if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_dsa_paramgen_bits(param_ctx.get(), modulus_bits_) <= 0)
      return nullptr;

    if (divisor_bits_ != -1) {
      if (EVP_PKEY_CTX_ctrl(param_ctx.get(), EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN,
                            EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, divisor_bits_,
                            nullptr) <= 0) {
        return nullptr;
      }
    }

    EVP_PKEY* raw_params = nullptr;
    if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
      return nullptr;
    EVPKeyPointer params(raw_params);
    param_ctx.reset();

    EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr));
    return key_ctx;
  }

 private:
  const unsigned int modulus_bits_;
  const int divisor_bits_;
};

class ECKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  ECKeyPairGenerationConfig(int curve_nid, int param_encoding)
    : curve_nid_(curve_nid), param_encoding_(param_encoding) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr));
    if (!param_ctx)
      return nullptr;

    if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(param_ctx.get(),
                                               curve_nid_) <= 0)
      return nullptr;

    if (EVP_PKEY_CTX_set_ec_param_enc(param_ctx.get(), param_encoding_) <= 0)
      return nullptr;

    EVP_PKEY* raw_params = nullptr;
    if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
      return nullptr;
    EVPKeyPointer params(raw_params);
    param_ctx.reset();

    EVPKeyCtxPointer key_ctx(EVP_PKEY_CTX_new(params.get(), nullptr));
    return key_ctx;
  }

 private:
  const int curve_nid_;
  const int param_encoding_;
};

class NidKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  explicit NidKeyPairGenerationConfig(int id) : id_(id) {}

  EVPKeyCtxPointer Setup() override {
    return EVPKeyCtxPointer(EVP_PKEY_CTX_new_id(id_, nullptr));
  }

 private:
  const int id_;
};

// TODO(tniessen): Use std::variant instead.
// Diffie-Hellman can either generate keys using a fixed prime, or by first
// generating a random prime of a given size (in bits). Only one of both options
// may be specified.
struct PrimeInfo {
  BignumPointer fixed_value_;
  unsigned int prime_size_;
};

class DHKeyPairGenerationConfig : public KeyPairGenerationConfig {
 public:
  explicit DHKeyPairGenerationConfig(PrimeInfo&& prime_info,
                                     unsigned int generator)
      : prime_info_(std::move(prime_info)),
        generator_(generator) {}

  EVPKeyCtxPointer Setup() override {
    EVPKeyPointer params;
    if (prime_info_.fixed_value_) {
      DHPointer dh(DH_new());
      if (!dh)
        return nullptr;

      BIGNUM* prime = prime_info_.fixed_value_.get();
      BignumPointer bn_g(BN_new());
      if (!BN_set_word(bn_g.get(), generator_) ||
          !DH_set0_pqg(dh.get(), prime, nullptr, bn_g.get()))
        return nullptr;

      prime_info_.fixed_value_.release();
      bn_g.release();

      params = EVPKeyPointer(EVP_PKEY_new());
      CHECK(params);
      EVP_PKEY_assign_DH(params.get(), dh.release());
    } else {
      EVPKeyCtxPointer param_ctx(EVP_PKEY_CTX_new_id(EVP_PKEY_DH, nullptr));
      if (!param_ctx)
        return nullptr;

      if (EVP_PKEY_paramgen_init(param_ctx.get()) <= 0)
        return nullptr;

      if (EVP_PKEY_CTX_set_dh_paramgen_prime_len(param_ctx.get(),
                                                 prime_info_.prime_size_) <= 0)
        return nullptr;

      if (EVP_PKEY_CTX_set_dh_paramgen_generator(param_ctx.get(),
                                                 generator_) <= 0)
        return nullptr;

      EVP_PKEY* raw_params = nullptr;
      if (EVP_PKEY_paramgen(param_ctx.get(), &raw_params) <= 0)
        return nullptr;
      params = EVPKeyPointer(raw_params);
    }

    return EVPKeyCtxPointer(EVP_PKEY_CTX_new(params.get(), nullptr));
  }

 private:
  PrimeInfo prime_info_;
  unsigned int generator_;
};

class GenerateKeyPairJob : public CryptoJob {
 public:
  GenerateKeyPairJob(Environment* env,
                     std::unique_ptr<KeyPairGenerationConfig> config,
                     PublicKeyEncodingConfig public_key_encoding,
                     PrivateKeyEncodingConfig&& private_key_encoding)
    : CryptoJob(env),
    config_(std::move(config)),
    public_key_encoding_(public_key_encoding),
    private_key_encoding_(std::forward<PrivateKeyEncodingConfig>(
        private_key_encoding)),
    pkey_(nullptr) {}

  inline void DoThreadPoolWork() override {
    if (!GenerateKey())
      errors_.Capture();
  }

  inline bool GenerateKey() {
    // Make sure that the CSPRNG is properly seeded so the results are secure.
    CheckEntropy();

    // Create the key generation context.
    EVPKeyCtxPointer ctx = config_->Setup();
    if (!ctx)
      return false;

    // Initialize key generation.
    if (EVP_PKEY_keygen_init(ctx.get()) <= 0)
      return false;

    // Configure key generation.
    if (!config_->Configure(ctx))
      return false;

    // Generate the key.
    EVP_PKEY* pkey = nullptr;
    if (EVP_PKEY_keygen(ctx.get(), &pkey) != 1)
      return false;
    pkey_ = ManagedEVPPKey(EVPKeyPointer(pkey));
    return true;
  }

  inline void AfterThreadPoolWork() override {
    Local<Value> args[3];
    ToResult(&args[0], &args[1], &args[2]);
    async_wrap->MakeCallback(env()->ondone_string(), 3, args);
  }

  inline void ToResult(Local<Value>* err,
                       Local<Value>* pubkey,
                       Local<Value>* privkey) {
    if (pkey_ && EncodeKeys(pubkey, privkey)) {
      CHECK(errors_.empty());
      *err = Undefined(env()->isolate());
    } else {
      if (errors_.empty())
        errors_.Capture();
      CHECK(!errors_.empty());
      *err = errors_.ToException(env()).ToLocalChecked();
      *pubkey = Undefined(env()->isolate());
      *privkey = Undefined(env()->isolate());
    }
  }

  inline bool EncodeKeys(Local<Value>* pubkey, Local<Value>* privkey) {
    // Encode the public key.
    if (public_key_encoding_.output_key_object_) {
      // Note that this has the downside of containing sensitive data of the
      // private key.
      std::shared_ptr<KeyObjectData> data =
          KeyObjectData::CreateAsymmetric(kKeyTypePublic, pkey_);
      if (!KeyObjectHandle::Create(env(), data).ToLocal(pubkey))
        return false;
    } else {
      if (!WritePublicKey(env(), pkey_.get(), public_key_encoding_)
               .ToLocal(pubkey))
        return false;
    }

    // Now do the same for the private key.
    if (private_key_encoding_.output_key_object_) {
      std::shared_ptr<KeyObjectData> data =
          KeyObjectData::CreateAsymmetric(kKeyTypePrivate, pkey_);
      if (!KeyObjectHandle::Create(env(), data).ToLocal(privkey))
        return false;
    } else {
      if (!WritePrivateKey(env(), pkey_.get(), private_key_encoding_)
               .ToLocal(privkey))
        return false;
    }

    return true;
  }

 private:
  CryptoErrorVector errors_;
  std::unique_ptr<KeyPairGenerationConfig> config_;
  PublicKeyEncodingConfig public_key_encoding_;
  PrivateKeyEncodingConfig private_key_encoding_;
  ManagedEVPPKey pkey_;
};

void GenerateKeyPair(const FunctionCallbackInfo<Value>& args,
                     unsigned int offset,
                     std::unique_ptr<KeyPairGenerationConfig> config) {
  Environment* env = Environment::GetCurrent(args);

  PublicKeyEncodingConfig public_key_encoding =
      GetPublicKeyEncodingFromJs(args, &offset, kKeyContextGenerate);
  NonCopyableMaybe<PrivateKeyEncodingConfig> private_key_encoding =
      GetPrivateKeyEncodingFromJs(args, &offset, kKeyContextGenerate);

  if (private_key_encoding.IsEmpty())
    return;

  std::unique_ptr<GenerateKeyPairJob> job(
      new GenerateKeyPairJob(env, std::move(config), public_key_encoding,
                             private_key_encoding.Release()));
  if (args[offset]->IsObject())
    return GenerateKeyPairJob::Run(std::move(job), args[offset]);
  env->PrintSyncTrace();
  job->DoThreadPoolWork();
  Local<Value> err, pubkey, privkey;
  job->ToResult(&err, &pubkey, &privkey);

  Local<Value> ret[] = { err, pubkey, privkey };
  args.GetReturnValue().Set(Array::New(env->isolate(), ret, arraysize(ret)));
}

void GenerateKeyPairRSA(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsUint32());
  const uint32_t exponent = args[1].As<Uint32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new RSAKeyPairGenerationConfig(modulus_bits, exponent));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairRSAPSS(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsUint32());
  const uint32_t exponent = args[1].As<Uint32>()->Value();

  const EVP_MD* md = nullptr;
  if (!args[2]->IsUndefined()) {
    CHECK(args[2]->IsString());
    String::Utf8Value md_name(env->isolate(), args[2].As<String>());
    md = EVP_get_digestbyname(*md_name);
    if (md == nullptr)
      return env->ThrowTypeError("Digest method not supported");
  }

  const EVP_MD* mgf1_md = nullptr;
  if (!args[3]->IsUndefined()) {
    CHECK(args[3]->IsString());
    String::Utf8Value mgf1_md_name(env->isolate(), args[3].As<String>());
    mgf1_md = EVP_get_digestbyname(*mgf1_md_name);
    if (mgf1_md == nullptr)
      return env->ThrowTypeError("Digest method not supported");
  }

  int saltlen = -1;
  if (!args[4]->IsUndefined()) {
    CHECK(args[4]->IsInt32());
    saltlen = args[4].As<Int32>()->Value();
  }

  std::unique_ptr<KeyPairGenerationConfig> config(
      new RSAPSSKeyPairGenerationConfig(modulus_bits, exponent,
                                        md, mgf1_md, saltlen));
  GenerateKeyPair(args, 5, std::move(config));
}

void GenerateKeyPairDSA(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsUint32());
  const uint32_t modulus_bits = args[0].As<Uint32>()->Value();
  CHECK(args[1]->IsInt32());
  const int32_t divisor_bits = args[1].As<Int32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new DSAKeyPairGenerationConfig(modulus_bits, divisor_bits));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairEC(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsString());
  String::Utf8Value curve_name(args.GetIsolate(), args[0].As<String>());
  int curve_nid = EC_curve_nist2nid(*curve_name);
  if (curve_nid == NID_undef)
    curve_nid = OBJ_sn2nid(*curve_name);
  // TODO(tniessen): Should we also support OBJ_ln2nid? (Other APIs don't.)
  if (curve_nid == NID_undef) {
    Environment* env = Environment::GetCurrent(args);
    return env->ThrowTypeError("Invalid ECDH curve name");
  }
  CHECK(args[1]->IsUint32());
  const uint32_t param_encoding = args[1].As<Int32>()->Value();
  CHECK(param_encoding == OPENSSL_EC_NAMED_CURVE ||
        param_encoding == OPENSSL_EC_EXPLICIT_CURVE);
  std::unique_ptr<KeyPairGenerationConfig> config(
      new ECKeyPairGenerationConfig(curve_nid, param_encoding));
  GenerateKeyPair(args, 2, std::move(config));
}

void GenerateKeyPairNid(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsInt32());
  const int id = args[0].As<Int32>()->Value();
  std::unique_ptr<KeyPairGenerationConfig> config(
      new NidKeyPairGenerationConfig(id));
  GenerateKeyPair(args, 1, std::move(config));
}

void GenerateKeyPairDH(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  PrimeInfo prime_info = {};
  unsigned int generator;
  if (args[0]->IsString()) {
    String::Utf8Value group_name(args.GetIsolate(), args[0].As<String>());
    const modp_group* group = FindDiffieHellmanGroup(*group_name);
    if (group == nullptr)
      return THROW_ERR_CRYPTO_UNKNOWN_DH_GROUP(env);

    prime_info.fixed_value_ = BignumPointer(
        BN_bin2bn(reinterpret_cast<const unsigned char*>(group->prime),
                  group->prime_size, nullptr));
    generator = group->gen;
  } else {
    if (args[0]->IsInt32()) {
      prime_info.prime_size_ = args[0].As<Int32>()->Value();
    } else {
      ArrayBufferViewContents<unsigned char> input(args[0]);
      prime_info.fixed_value_ = BignumPointer(
          BN_bin2bn(input.data(), input.length(), nullptr));
    }

    CHECK(args[1]->IsInt32());
    generator = args[1].As<Int32>()->Value();
  }

  std::unique_ptr<KeyPairGenerationConfig> config(
      new DHKeyPairGenerationConfig(std::move(prime_info), generator));
  GenerateKeyPair(args, 2, std::move(config));
}


void GetSSLCiphers(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  SSLCtxPointer ctx(SSL_CTX_new(TLS_method()));
  CHECK(ctx);

  SSLPointer ssl(SSL_new(ctx.get()));
  CHECK(ssl);

  STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl.get());
  // TLSv1.3 ciphers aren't listed by EVP. There are only 5, we could just
  // document them, but since there are only 5, easier to just add them manually
  // and not have to explain their absence in the API docs. They are lower-cased
  // because the docs say they will be.
  static const char* TLS13_CIPHERS[] = {
    "tls_aes_256_gcm_sha384",
    "tls_chacha20_poly1305_sha256",
    "tls_aes_128_gcm_sha256",
    "tls_aes_128_ccm_8_sha256",
    "tls_aes_128_ccm_sha256"
  };

  const int n = sk_SSL_CIPHER_num(ciphers);
  std::vector<Local<Value>> arr(n + arraysize(TLS13_CIPHERS));

  for (int i = 0; i < n; ++i) {
    const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i);
    arr[i] = OneByteString(env->isolate(), SSL_CIPHER_get_name(cipher));
  }

  for (unsigned i = 0; i < arraysize(TLS13_CIPHERS); ++i) {
    const char* name = TLS13_CIPHERS[i];
    arr[n + i] = OneByteString(env->isolate(), name);
  }

  args.GetReturnValue().Set(Array::New(env->isolate(), arr.data(), arr.size()));
}


class CipherPushContext {
 public:
  explicit CipherPushContext(Environment* env)
      : arr(Array::New(env->isolate())),
        env_(env) {
  }

  inline Environment* env() const { return env_; }

  Local<Array> arr;

 private:
  Environment* env_;
};


template <class TypeName>
static void array_push_back(const TypeName* md,
                            const char* from,
                            const char* to,
                            void* arg) {
  CipherPushContext* ctx = static_cast<CipherPushContext*>(arg);
  ctx->arr->Set(ctx->env()->context(),
                ctx->arr->Length(),
                OneByteString(ctx->env()->isolate(), from)).Check();
}


void GetCiphers(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherPushContext ctx(env);
  EVP_CIPHER_do_all_sorted(array_push_back<EVP_CIPHER>, &ctx);
  args.GetReturnValue().Set(ctx.arr);
}


void GetHashes(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CipherPushContext ctx(env);
  EVP_MD_do_all_sorted(array_push_back<EVP_MD>, &ctx);
  args.GetReturnValue().Set(ctx.arr);
}


void GetCurves(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  const size_t num_curves = EC_get_builtin_curves(nullptr, 0);

  if (num_curves) {
    std::vector<EC_builtin_curve> curves(num_curves);

    if (EC_get_builtin_curves(curves.data(), num_curves)) {
      std::vector<Local<Value>> arr(num_curves);

      for (size_t i = 0; i < num_curves; i++)
        arr[i] = OneByteString(env->isolate(), OBJ_nid2sn(curves[i].nid));

      args.GetReturnValue().Set(
          Array::New(env->isolate(), arr.data(), arr.size()));
      return;
    }
  }

  args.GetReturnValue().Set(Array::New(env->isolate()));
}


bool VerifySpkac(const char* data, unsigned int len) {
  NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len));
  if (!spki)
    return false;

  EVPKeyPointer pkey(X509_PUBKEY_get(spki->spkac->pubkey));
  if (!pkey)
    return false;

  return NETSCAPE_SPKI_verify(spki.get(), pkey.get()) > 0;
}


void VerifySpkac(const FunctionCallbackInfo<Value>& args) {
  bool verify_result = false;

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  CHECK_NOT_NULL(input.data());

  verify_result = VerifySpkac(input.data(), input.length());

  args.GetReturnValue().Set(verify_result);
}

AllocatedBuffer ExportPublicKey(Environment* env,
                                const char* data,
                                int len,
                                size_t* size) {
  BIOPointer bio(BIO_new(BIO_s_mem()));
  if (!bio) return AllocatedBuffer();

  NetscapeSPKIPointer spki(NETSCAPE_SPKI_b64_decode(data, len));
  if (!spki) return AllocatedBuffer();

  EVPKeyPointer pkey(NETSCAPE_SPKI_get_pubkey(spki.get()));
  if (!pkey) return AllocatedBuffer();

  if (PEM_write_bio_PUBKEY(bio.get(), pkey.get()) <= 0)
    return AllocatedBuffer();

  BUF_MEM* ptr;
  BIO_get_mem_ptr(bio.get(), &ptr);

  *size = ptr->length;
  AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, *size);
  memcpy(buf.data(), ptr->data, *size);

  return buf;
}


void ExportPublicKey(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  CHECK_NOT_NULL(input.data());

  size_t pkey_size;
  AllocatedBuffer pkey =
      ExportPublicKey(env, input.data(), input.length(), &pkey_size);
  if (pkey.data() == nullptr)
    return args.GetReturnValue().SetEmptyString();

  args.GetReturnValue().Set(pkey.ToBuffer().ToLocalChecked());
}


OpenSSLBuffer ExportChallenge(const char* data, int len) {
  NetscapeSPKIPointer sp(NETSCAPE_SPKI_b64_decode(data, len));
  if (!sp)
    return nullptr;

  unsigned char* buf = nullptr;
  ASN1_STRING_to_UTF8(&buf, sp->spkac->challenge);

  return OpenSSLBuffer(reinterpret_cast<char*>(buf));
}


void ExportChallenge(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  ArrayBufferViewContents<char> input(args[0]);
  if (input.length() == 0)
    return args.GetReturnValue().SetEmptyString();

  OpenSSLBuffer cert = ExportChallenge(input.data(), input.length());
  if (!cert)
    return args.GetReturnValue().SetEmptyString();

  Local<Value> outString =
      Encode(env->isolate(), cert.get(), strlen(cert.get()), BUFFER);

  args.GetReturnValue().Set(outString);
}


// Convert the input public key to compressed, uncompressed, or hybrid formats.
void ConvertKey(const FunctionCallbackInfo<Value>& args) {
  MarkPopErrorOnReturn mark_pop_error_on_return;
  Environment* env = Environment::GetCurrent(args);

  CHECK_EQ(args.Length(), 3);
  CHECK(args[0]->IsArrayBufferView());

  size_t len = args[0].As<ArrayBufferView>()->ByteLength();
  if (len == 0)
    return args.GetReturnValue().SetEmptyString();

  node::Utf8Value curve(env->isolate(), args[1]);

  int nid = OBJ_sn2nid(*curve);
  if (nid == NID_undef)
    return env->ThrowTypeError("Invalid ECDH curve name");

  ECGroupPointer group(
      EC_GROUP_new_by_curve_name(nid));
  if (group == nullptr)
    return env->ThrowError("Failed to get EC_GROUP");

  ECPointPointer pub(
      ECDH::BufferToPoint(env,
                          group.get(),
                          args[0]));

  if (pub == nullptr)
    return env->ThrowError("Failed to convert Buffer to EC_POINT");

  CHECK(args[2]->IsUint32());
  uint32_t val = args[2].As<Uint32>()->Value();
  point_conversion_form_t form = static_cast<point_conversion_form_t>(val);

  const char* error;
  Local<Object> buf;
  if (!ECPointToBuffer(env, group.get(), pub.get(), form, &error).ToLocal(&buf))
    return env->ThrowError(error);
  args.GetReturnValue().Set(buf);
}

AllocatedBuffer StatelessDiffieHellman(Environment* env, ManagedEVPPKey our_key,
                                       ManagedEVPPKey their_key) {
  size_t out_size;

  EVPKeyCtxPointer ctx(EVP_PKEY_CTX_new(our_key.get(), nullptr));
  if (!ctx ||
      EVP_PKEY_derive_init(ctx.get()) <= 0 ||
      EVP_PKEY_derive_set_peer(ctx.get(), their_key.get()) <= 0 ||
      EVP_PKEY_derive(ctx.get(), nullptr, &out_size) <= 0)
    return AllocatedBuffer();

  AllocatedBuffer result = AllocatedBuffer::AllocateManaged(env, out_size);
  CHECK_NOT_NULL(result.data());

  unsigned char* data = reinterpret_cast<unsigned char*>(result.data());
  if (EVP_PKEY_derive(ctx.get(), data, &out_size) <= 0)
    return AllocatedBuffer();

  ZeroPadDiffieHellmanSecret(out_size, &result);
  return result;
}

void StatelessDiffieHellman(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);

  CHECK(args[0]->IsObject() && args[1]->IsObject());
  KeyObjectHandle* our_key_object;
  ASSIGN_OR_RETURN_UNWRAP(&our_key_object, args[0].As<Object>());
  CHECK_EQ(our_key_object->Data()->GetKeyType(), kKeyTypePrivate);
  KeyObjectHandle* their_key_object;
  ASSIGN_OR_RETURN_UNWRAP(&their_key_object, args[1].As<Object>());
  CHECK_NE(their_key_object->Data()->GetKeyType(), kKeyTypeSecret);

  ManagedEVPPKey our_key = our_key_object->Data()->GetAsymmetricKey();
  ManagedEVPPKey their_key = their_key_object->Data()->GetAsymmetricKey();

  AllocatedBuffer out = StatelessDiffieHellman(env, our_key, their_key);
  if (out.size() == 0)
    return ThrowCryptoError(env, ERR_get_error(), "diffieHellman failed");

  args.GetReturnValue().Set(out.ToBuffer().ToLocalChecked());
}


void TimingSafeEqual(const FunctionCallbackInfo<Value>& args) {
  // Moving the type checking into JS leads to test failures, most likely due
  // to V8 inlining certain parts of the wrapper. Therefore, keep them in C++.
  // Refs: https://github.com/nodejs/node/issues/34073.
  Environment* env = Environment::GetCurrent(args);
  if (!args[0]->IsArrayBufferView()) {
    THROW_ERR_INVALID_ARG_TYPE(
      env, "The \"buf1\" argument must be an instance of "
      "Buffer, TypedArray, or DataView.");
    return;
  }
  if (!args[1]->IsArrayBufferView()) {
    THROW_ERR_INVALID_ARG_TYPE(
      env, "The \"buf2\" argument must be an instance of "
      "Buffer, TypedArray, or DataView.");
    return;
  }

  ArrayBufferViewContents<char> buf1(args[0].As<ArrayBufferView>());
  ArrayBufferViewContents<char> buf2(args[1].As<ArrayBufferView>());

  if (buf1.length() != buf2.length()) {
    THROW_ERR_CRYPTO_TIMING_SAFE_EQUAL_LENGTH(env);
    return;
  }

  return args.GetReturnValue().Set(
      CRYPTO_memcmp(buf1.data(), buf2.data(), buf1.length()) == 0);
}

void InitCryptoOnce() {
#ifndef OPENSSL_IS_BORINGSSL
  OPENSSL_INIT_SETTINGS* settings = OPENSSL_INIT_new();

  // --openssl-config=...
  if (!per_process::cli_options->openssl_config.empty()) {
    const char* conf = per_process::cli_options->openssl_config.c_str();
    OPENSSL_INIT_set_config_filename(settings, conf);
  }

  OPENSSL_init_ssl(0, settings);
  OPENSSL_INIT_free(settings);
  settings = nullptr;
#endif

#ifdef NODE_FIPS_MODE
  /* Override FIPS settings in cnf file, if needed. */
  unsigned long err = 0;  // NOLINT(runtime/int)
  if (per_process::cli_options->enable_fips_crypto ||
      per_process::cli_options->force_fips_crypto) {
    if (0 == FIPS_mode() && !FIPS_mode_set(1)) {
      err = ERR_get_error();
    }
  }
  if (0 != err) {
    fprintf(stderr,
            "openssl fips failed: %s\n",
            ERR_error_string(err, nullptr));
    UNREACHABLE();
  }
#endif  // NODE_FIPS_MODE


  // Turn off compression. Saves memory and protects against CRIME attacks.
  // No-op with OPENSSL_NO_COMP builds of OpenSSL.
  sk_SSL_COMP_zero(SSL_COMP_get_compression_methods());

#ifndef OPENSSL_NO_ENGINE
  ERR_load_ENGINE_strings();
  ENGINE_load_builtin_engines();
#endif  // !OPENSSL_NO_ENGINE

  NodeBIO::GetMethod();
}


#ifndef OPENSSL_NO_ENGINE
void SetEngine(const FunctionCallbackInfo<Value>& args) {
  Environment* env = Environment::GetCurrent(args);
  CHECK(args.Length() >= 2 && args[0]->IsString());
  uint32_t flags;
  if (!args[1]->Uint32Value(env->context()).To(&flags)) return;

  ClearErrorOnReturn clear_error_on_return;

  // Load engine.
  const node::Utf8Value engine_id(env->isolate(), args[0]);
  char errmsg[1024];
  ENGINE* engine = LoadEngineById(*engine_id, &errmsg);

  if (engine == nullptr) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    if (err == 0)
      return args.GetReturnValue().Set(false);
    return ThrowCryptoError(env, err);
  }

  int r = ENGINE_set_default(engine, flags);
  ENGINE_free(engine);
  if (r == 0)
    return ThrowCryptoError(env, ERR_get_error());

  args.GetReturnValue().Set(true);
}
#endif  // !OPENSSL_NO_ENGINE

#ifdef NODE_FIPS_MODE
void GetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
  args.GetReturnValue().Set(FIPS_mode() ? 1 : 0);
}

void SetFipsCrypto(const FunctionCallbackInfo<Value>& args) {
  CHECK(!per_process::cli_options->force_fips_crypto);
  Environment* env = Environment::GetCurrent(args);
  const bool enabled = FIPS_mode();
  bool enable = args[0]->BooleanValue(env->isolate());

  if (enable == enabled)
    return;  // No action needed.
  if (!FIPS_mode_set(enable)) {
    unsigned long err = ERR_get_error();  // NOLINT(runtime/int)
    return ThrowCryptoError(env, err);
  }
}
#endif /* NODE_FIPS_MODE */

namespace {
// SecureBuffer uses openssl to allocate a Uint8Array using
// OPENSSL_secure_malloc. Because we do not yet actually
// make use of secure heap, this has the same semantics as
// using OPENSSL_malloc. However, if the secure heap is
// initialized, SecureBuffer will automatically use it.
void SecureBuffer(const FunctionCallbackInfo<Value>& args) {
  CHECK(args[0]->IsUint32());
  Environment* env = Environment::GetCurrent(args);
  uint32_t len = args[0].As<Uint32>()->Value();
  char* data = static_cast<char*>(OPENSSL_secure_malloc(len));
  if (data == nullptr) {
    // There's no memory available for the allocation.
    // Return nothing.
    return;
  }
  memset(data, 0, len);
  std::shared_ptr<BackingStore> store =
      ArrayBuffer::NewBackingStore(
          data,
          len,
          [](void* data, size_t len, void* deleter_data) {
            OPENSSL_secure_clear_free(data, len);
          },
          data);
  Local<ArrayBuffer> buffer = ArrayBuffer::New(env->isolate(), store);
  args.GetReturnValue().Set(Uint8Array::New(buffer, 0, len));
}
}  // namespace

void Initialize(Local<Object> target,
                Local<Value> unused,
                Local<Context> context,
                void* priv) {
  static uv_once_t init_once = UV_ONCE_INIT;
  uv_once(&init_once, InitCryptoOnce);

  Environment* env = Environment::GetCurrent(context);
  SecureContext::Initialize(env, target);
  target->Set(env->context(),
            FIXED_ONE_BYTE_STRING(env->isolate(), "KeyObjectHandle"),
            KeyObjectHandle::Initialize(env)).Check();
  env->SetMethod(target, "createNativeKeyObjectClass",
                 CreateNativeKeyObjectClass);
  CipherBase::Initialize(env, target);
  DiffieHellman::Initialize(env, target);
  ECDH::Initialize(env, target);
  Hmac::Initialize(env, target);
  Hash::Initialize(env, target);
  Sign::Initialize(env, target);
  Verify::Initialize(env, target);

  env->SetMethodNoSideEffect(target, "certVerifySpkac", VerifySpkac);
  env->SetMethodNoSideEffect(target, "certExportPublicKey", ExportPublicKey);
  env->SetMethodNoSideEffect(target, "certExportChallenge", ExportChallenge);
  env->SetMethodNoSideEffect(target, "getRootCertificates",
                             GetRootCertificates);
  // Exposed for testing purposes only.
  env->SetMethodNoSideEffect(target, "isExtraRootCertsFileLoaded",
                             IsExtraRootCertsFileLoaded);

  env->SetMethodNoSideEffect(target, "ECDHConvertKey", ConvertKey);
#ifndef OPENSSL_NO_ENGINE
  env->SetMethod(target, "setEngine", SetEngine);
#endif  // !OPENSSL_NO_ENGINE

#ifdef NODE_FIPS_MODE
  env->SetMethodNoSideEffect(target, "getFipsCrypto", GetFipsCrypto);
  env->SetMethod(target, "setFipsCrypto", SetFipsCrypto);
#endif

  env->SetMethod(target, "pbkdf2", PBKDF2);
  env->SetMethod(target, "generateKeyPairRSA", GenerateKeyPairRSA);
  env->SetMethod(target, "generateKeyPairRSAPSS", GenerateKeyPairRSAPSS);
  env->SetMethod(target, "generateKeyPairDSA", GenerateKeyPairDSA);
  env->SetMethod(target, "generateKeyPairEC", GenerateKeyPairEC);
  env->SetMethod(target, "generateKeyPairNid", GenerateKeyPairNid);
  env->SetMethod(target, "generateKeyPairDH", GenerateKeyPairDH);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED25519);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED448);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_X25519);
  NODE_DEFINE_CONSTANT(target, EVP_PKEY_X448);
  NODE_DEFINE_CONSTANT(target, OPENSSL_EC_NAMED_CURVE);
  NODE_DEFINE_CONSTANT(target, OPENSSL_EC_EXPLICIT_CURVE);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS1);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS8);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingSPKI);
  NODE_DEFINE_CONSTANT(target, kKeyEncodingSEC1);
  NODE_DEFINE_CONSTANT(target, kKeyFormatDER);
  NODE_DEFINE_CONSTANT(target, kKeyFormatPEM);
  NODE_DEFINE_CONSTANT(target, kKeyTypeSecret);
  NODE_DEFINE_CONSTANT(target, kKeyTypePublic);
  NODE_DEFINE_CONSTANT(target, kKeyTypePrivate);
  NODE_DEFINE_CONSTANT(target, kSigEncDER);
  NODE_DEFINE_CONSTANT(target, kSigEncP1363);
  env->SetMethodNoSideEffect(target, "statelessDH", StatelessDiffieHellman);
  env->SetMethod(target, "randomBytes", RandomBytes);
  env->SetMethod(target, "signOneShot", SignOneShot);
  env->SetMethod(target, "verifyOneShot", VerifyOneShot);
  env->SetMethodNoSideEffect(target, "timingSafeEqual", TimingSafeEqual);
  env->SetMethodNoSideEffect(target, "getSSLCiphers", GetSSLCiphers);
  env->SetMethodNoSideEffect(target, "getCiphers", GetCiphers);
  env->SetMethodNoSideEffect(target, "getHashes", GetHashes);
  env->SetMethodNoSideEffect(target, "getCurves", GetCurves);
  env->SetMethod(target, "publicEncrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
                                         EVP_PKEY_encrypt_init,
                                         EVP_PKEY_encrypt>);
  env->SetMethod(target, "privateDecrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
                                         EVP_PKEY_decrypt_init,
                                         EVP_PKEY_decrypt>);
  env->SetMethod(target, "privateEncrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPrivate,
                                         EVP_PKEY_sign_init,
                                         EVP_PKEY_sign>);
  env->SetMethod(target, "publicDecrypt",
                 PublicKeyCipher::Cipher<PublicKeyCipher::kPublic,
                                         EVP_PKEY_verify_recover_init,
                                         EVP_PKEY_verify_recover>);
#ifndef OPENSSL_NO_SCRYPT
  env->SetMethod(target, "scrypt", Scrypt);
#endif  // OPENSSL_NO_SCRYPT

  env->SetMethod(target, "secureBuffer", SecureBuffer);
}

}  // namespace crypto
}  // namespace node

NODE_MODULE_CONTEXT_AWARE_INTERNAL(crypto, node::crypto::Initialize)