Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Your IP : 3.149.24.70
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% M M AAA TTTTT L AAA BBBB %
% MM MM A A T L A A B B %
% M M M AAAAA T L AAAAA BBBB %
% M M A A T L A A B B %
% M M A A T LLLLL A A BBBB %
% %
% %
% Read MATLAB Image Format %
% %
% Software Design %
% Jaroslav Fojtik %
% 2001-2008 %
% %
% %
% Permission is hereby granted, free of charge, to any person obtaining a %
% copy of this software and associated documentation files ("ImageMagick"), %
% to deal in ImageMagick without restriction, including without limitation %
% the rights to use, copy, modify, merge, publish, distribute, sublicense, %
% and/or sell copies of ImageMagick, and to permit persons to whom the %
% ImageMagick is furnished to do so, subject to the following conditions: %
% %
% The above copyright notice and this permission notice shall be included in %
% all copies or substantial portions of ImageMagick. %
% %
% The software is provided "as is", without warranty of any kind, express or %
% implied, including but not limited to the warranties of merchantability, %
% fitness for a particular purpose and noninfringement. In no event shall %
% ImageMagick Studio be liable for any claim, damages or other liability, %
% whether in an action of contract, tort or otherwise, arising from, out of %
% or in connection with ImageMagick or the use or other dealings in %
% ImageMagick. %
% %
% Except as contained in this notice, the name of the ImageMagick Studio %
% shall not be used in advertising or otherwise to promote the sale, use or %
% other dealings in ImageMagick without prior written authorization from the %
% ImageMagick Studio. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/attribute.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colormap.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/distort.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/resource_.h"
#include "MagickCore/static.h"
#include "MagickCore/string_.h"
#include "MagickCore/module.h"
#include "MagickCore/timer-private.h"
#include "MagickCore/transform.h"
#include "MagickCore/utility-private.h"
#if defined(MAGICKCORE_ZLIB_DELEGATE)
#include "zlib.h"
#endif
/*
Forward declaration.
*/
static MagickBooleanType
WriteMATImage(const ImageInfo *,Image *,ExceptionInfo *);
/* Auto coloring method, sorry this creates some artefact inside data
MinReal+j*MaxComplex = red MaxReal+j*MaxComplex = black
MinReal+j*0 = white MaxReal+j*0 = black
MinReal+j*MinComplex = blue MaxReal+j*MinComplex = black
*/
typedef struct
{
char identific[124];
unsigned short Version;
char EndianIndicator[2];
unsigned int DataType;
unsigned int ObjectSize;
unsigned int unknown1;
unsigned int unknown2;
unsigned short unknown5;
unsigned char StructureFlag;
unsigned char StructureClass;
unsigned int unknown3;
unsigned int unknown4;
unsigned int DimFlag;
unsigned int SizeX;
unsigned int SizeY;
unsigned short Flag1;
unsigned short NameFlag;
}
MATHeader;
static const char
MonthsTab[12][4] = {"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
static const char
DayOfWTab[7][4] = {"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
static const char
OsDesc[] =
#if defined(MAGICKCORE_WINDOWS_SUPPORT)
"PCWIN";
#else
#ifdef __APPLE__
"MAC";
#else
"LNX86";
#endif
#endif
typedef enum
{
miINT8 = 1, /* 8 bit signed */
miUINT8, /* 8 bit unsigned */
miINT16, /* 16 bit signed */
miUINT16, /* 16 bit unsigned */
miINT32, /* 32 bit signed */
miUINT32, /* 32 bit unsigned */
miSINGLE, /* IEEE 754 single precision float */
miRESERVE1,
miDOUBLE, /* IEEE 754 double precision float */
miRESERVE2,
miRESERVE3,
miINT64, /* 64 bit signed */
miUINT64, /* 64 bit unsigned */
miMATRIX, /* MATLAB array */
miCOMPRESSED, /* Compressed Data */
miUTF8, /* Unicode UTF-8 Encoded Character Data */
miUTF16, /* Unicode UTF-16 Encoded Character Data */
miUTF32 /* Unicode UTF-32 Encoded Character Data */
} mat5_data_type;
typedef enum
{
mxCELL_CLASS=1, /* cell array */
mxSTRUCT_CLASS, /* structure */
mxOBJECT_CLASS, /* object */
mxCHAR_CLASS, /* character array */
mxSPARSE_CLASS, /* sparse array */
mxDOUBLE_CLASS, /* double precision array */
mxSINGLE_CLASS, /* single precision floating point */
mxINT8_CLASS, /* 8 bit signed integer */
mxUINT8_CLASS, /* 8 bit unsigned integer */
mxINT16_CLASS, /* 16 bit signed integer */
mxUINT16_CLASS, /* 16 bit unsigned integer */
mxINT32_CLASS, /* 32 bit signed integer */
mxUINT32_CLASS, /* 32 bit unsigned integer */
mxINT64_CLASS, /* 64 bit signed integer */
mxUINT64_CLASS, /* 64 bit unsigned integer */
mxFUNCTION_CLASS /* Function handle */
} arrayclasstype;
#define FLAG_COMPLEX 0x8
#define FLAG_GLOBAL 0x4
#define FLAG_LOGICAL 0x2
static const QuantumType z2qtype[4] = {GrayQuantum, BlueQuantum, GreenQuantum, RedQuantum};
static void InsertComplexDoubleRow(Image *image,double *p,int y,double MinVal,
double MaxVal,ExceptionInfo *exception)
{
double f;
int x;
register Quantum *q;
if (MinVal >= 0)
MinVal = -1;
if (MaxVal <= 0)
MaxVal = 1;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
return;
for (x = 0; x < (ssize_t) image->columns; x++)
{
if (*p > 0)
{
f=(*p/MaxVal)*(Quantum) (QuantumRange-GetPixelRed(image,q));
if ((f+GetPixelRed(image,q)) >= QuantumRange)
SetPixelRed(image,QuantumRange,q);
else
SetPixelRed(image,GetPixelRed(image,q)+ClampToQuantum(f),q);
f=GetPixelGreen(image,q)-f/2.0;
if (f <= 0.0)
{
SetPixelGreen(image,0,q);
SetPixelBlue(image,0,q);
}
else
{
SetPixelBlue(image,ClampToQuantum(f),q);
SetPixelGreen(image,ClampToQuantum(f),q);
}
}
if (*p < 0)
{
f=(*p/MinVal)*(Quantum) (QuantumRange-GetPixelBlue(image,q));
if ((f+GetPixelBlue(image,q)) >= QuantumRange)
SetPixelBlue(image,QuantumRange,q);
else
SetPixelBlue(image,GetPixelBlue(image,q)+ClampToQuantum(f),q);
f=GetPixelGreen(image,q)-f/2.0;
if (f <= 0.0)
{
SetPixelRed(image,0,q);
SetPixelGreen(image,0,q);
}
else
{
SetPixelRed(image,ClampToQuantum(f),q);
SetPixelGreen(image,ClampToQuantum(f),q);
}
}
p++;
q++;
}
if (!SyncAuthenticPixels(image,exception))
return;
return;
}
static void InsertComplexFloatRow(Image *image,float *p,int y,double MinVal,
double MaxVal,ExceptionInfo *exception)
{
double f;
int x;
register Quantum *q;
if (MinVal >= 0)
MinVal = -1;
if (MaxVal <= 0)
MaxVal = 1;
q = QueueAuthenticPixels(image, 0, y, image->columns, 1,exception);
if (q == (Quantum *) NULL)
return;
for (x = 0; x < (ssize_t) image->columns; x++)
{
if (*p > 0)
{
f=(*p/MaxVal)*(Quantum) (QuantumRange-GetPixelRed(image,q));
if ((f+GetPixelRed(image,q)) < QuantumRange)
SetPixelRed(image,GetPixelRed(image,q)+ClampToQuantum(f),q);
else
SetPixelRed(image,QuantumRange,q);
f/=2.0;
if (f < GetPixelGreen(image,q))
{
SetPixelBlue(image,GetPixelBlue(image,q)-ClampToQuantum(f),q);
SetPixelGreen(image,GetPixelBlue(image,q),q);
}
else
{
SetPixelGreen(image,0,q);
SetPixelBlue(image,0,q);
}
}
if (*p < 0)
{
f=(*p/MaxVal)*(Quantum) (QuantumRange-GetPixelBlue(image,q));
if ((f+GetPixelBlue(image,q)) < QuantumRange)
SetPixelBlue(image,GetPixelBlue(image,q)+ClampToQuantum(f),q);
else
SetPixelBlue(image,QuantumRange,q);
f/=2.0;
if (f < GetPixelGreen(image,q))
{
SetPixelRed(image,GetPixelRed(image,q)-ClampToQuantum(f),q);
SetPixelGreen(image,GetPixelRed(image,q),q);
}
else
{
SetPixelGreen(image,0,q);
SetPixelRed(image,0,q);
}
}
p++;
q++;
}
if (!SyncAuthenticPixels(image,exception))
return;
return;
}
/************** READERS ******************/
/* This function reads one block of floats*/
static void ReadBlobFloatsLSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobFloatsMSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* This function reads one block of doubles*/
static void ReadBlobDoublesLSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobDoublesMSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* Calculate minimum and maximum from a given block of data */
static void CalcMinMax(Image *image, int endian_indicator, int SizeX, int SizeY, size_t CellType, unsigned ldblk, void *BImgBuff, double *Min, double *Max)
{
MagickOffsetType filepos;
int i, x;
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
double *dblrow;
float *fltrow;
if (endian_indicator == LSBEndian)
{
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
}
else /* MI */
{
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
}
filepos = TellBlob(image); /* Please note that file seeking occurs only in the case of doubles */
for (i = 0; i < SizeY; i++)
{
if (CellType==miDOUBLE)
{
ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
dblrow = (double *)BImgBuff;
if (i == 0)
{
*Min = *Max = *dblrow;
}
for (x = 0; x < SizeX; x++)
{
if (*Min > *dblrow)
*Min = *dblrow;
if (*Max < *dblrow)
*Max = *dblrow;
dblrow++;
}
}
if (CellType==miSINGLE)
{
ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
fltrow = (float *)BImgBuff;
if (i == 0)
{
*Min = *Max = *fltrow;
}
for (x = 0; x < (ssize_t) SizeX; x++)
{
if (*Min > *fltrow)
*Min = *fltrow;
if (*Max < *fltrow)
*Max = *fltrow;
fltrow++;
}
}
}
(void) SeekBlob(image, filepos, SEEK_SET);
}
static void FixSignedValues(const Image *image,Quantum *q, int y)
{
while(y-->0)
{
/* Please note that negative values will overflow
Q=8; QuantumRange=255: <0;127> + 127+1 = <128; 255>
<-1;-128> + 127+1 = <0; 127> */
SetPixelRed(image,GetPixelRed(image,q)+QuantumRange/2+1,q);
SetPixelGreen(image,GetPixelGreen(image,q)+QuantumRange/2+1,q);
SetPixelBlue(image,GetPixelBlue(image,q)+QuantumRange/2+1,q);
q++;
}
}
/** Fix whole row of logical/binary data. It means pack it. */
static void FixLogical(unsigned char *Buff,int ldblk)
{
unsigned char mask=128;
unsigned char *BuffL = Buff;
unsigned char val = 0;
while(ldblk-->0)
{
if(*Buff++ != 0)
val |= mask;
mask >>= 1;
if(mask==0)
{
*BuffL++ = val;
val = 0;
mask = 128;
}
}
*BuffL = val;
}
#if defined(MAGICKCORE_ZLIB_DELEGATE)
static voidpf AcquireZIPMemory(voidpf context,unsigned int items,
unsigned int size)
{
(void) context;
return((voidpf) AcquireQuantumMemory(items,size));
}
static void RelinquishZIPMemory(voidpf context,voidpf memory)
{
(void) context;
memory=RelinquishMagickMemory(memory);
}
#endif
#if defined(MAGICKCORE_ZLIB_DELEGATE)
/** This procedure decompreses an image block for a new MATLAB format. */
static Image *decompress_block(Image *orig, unsigned int *Size, ImageInfo *clone_info, ExceptionInfo *exception)
{
Image *image2;
void *cache_block, *decompress_block;
z_stream zip_info;
FILE *mat_file;
size_t magick_size;
size_t extent;
int file;
int status;
int zip_status;
ssize_t TotalSize = 0;
if(clone_info==NULL) return NULL;
if(clone_info->file) /* Close file opened from previous transaction. */
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
cache_block = AcquireQuantumMemory((size_t)(*Size < MagickMinBufferExtent) ? *Size: MagickMinBufferExtent,sizeof(unsigned char *));
if(cache_block==NULL) return NULL;
decompress_block = AcquireQuantumMemory((size_t)(4096),sizeof(unsigned char *));
if(decompress_block==NULL)
{
RelinquishMagickMemory(cache_block);
return NULL;
}
mat_file=0;
file = AcquireUniqueFileResource(clone_info->filename);
if (file != -1)
mat_file = fdopen(file,"w");
if(!mat_file)
{
RelinquishMagickMemory(cache_block);
RelinquishMagickMemory(decompress_block);
(void) LogMagickEvent(CoderEvent,GetMagickModule(),"Cannot create file stream for decompressed image");
return NULL;
}
zip_info.zalloc=AcquireZIPMemory;
zip_info.zfree=RelinquishZIPMemory;
zip_info.opaque = (voidpf) NULL;
zip_status = inflateInit(&zip_info);
if (zip_status != Z_OK)
{
RelinquishMagickMemory(cache_block);
RelinquishMagickMemory(decompress_block);
(void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError,
"UnableToUncompressImage","`%s'",clone_info->filename);
(void) fclose(mat_file);
RelinquishUniqueFileResource(clone_info->filename);
return NULL;
}
/* zip_info.next_out = 8*4;*/
zip_info.avail_in = 0;
zip_info.total_out = 0;
while(*Size>0 && !EOFBlob(orig))
{
magick_size = ReadBlob(orig, (*Size < MagickMinBufferExtent) ? *Size : MagickMinBufferExtent, (unsigned char *) cache_block);
if (magick_size == 0)
break;
zip_info.next_in = (Bytef *) cache_block;
zip_info.avail_in = (uInt) magick_size;
while(zip_info.avail_in>0)
{
zip_info.avail_out = 4096;
zip_info.next_out = (Bytef *) decompress_block;
zip_status = inflate(&zip_info,Z_NO_FLUSH);
if ((zip_status != Z_OK) && (zip_status != Z_STREAM_END))
break;
extent=fwrite(decompress_block, 4096-zip_info.avail_out, 1, mat_file);
(void) extent;
TotalSize += 4096-zip_info.avail_out;
if(zip_status == Z_STREAM_END) goto DblBreak;
}
if ((zip_status != Z_OK) && (zip_status != Z_STREAM_END))
break;
*Size -= (unsigned int) magick_size;
}
DblBreak:
inflateEnd(&zip_info);
(void)fclose(mat_file);
RelinquishMagickMemory(cache_block);
RelinquishMagickMemory(decompress_block);
*Size = TotalSize;
if((clone_info->file=fopen(clone_info->filename,"rb"))==NULL) goto UnlinkFile;
if( (image2 = AcquireImage(clone_info,exception))==NULL ) goto EraseFile;
status = OpenBlob(clone_info,image2,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
DeleteImageFromList(&image2);
EraseFile:
fclose(clone_info->file);
clone_info->file = NULL;
UnlinkFile:
RelinquishUniqueFileResource(clone_info->filename);
return NULL;
}
return image2;
}
#endif
static Image *ReadMATImageV4(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
typedef struct {
unsigned char Type[4];
unsigned int nRows;
unsigned int nCols;
unsigned int imagf;
unsigned int nameLen;
} MAT4_HDR;
long
ldblk;
EndianType
endian;
Image
*rotated_image;
MagickBooleanType
status;
MAT4_HDR
HDR;
QuantumInfo
*quantum_info;
QuantumFormatType
format_type;
register ssize_t
i;
ssize_t
count,
y;
unsigned char
*pixels;
unsigned int
depth;
quantum_info=(QuantumInfo *) NULL;
(void) SeekBlob(image,0,SEEK_SET);
status=MagickTrue;
while (EOFBlob(image) == MagickFalse)
{
/*
Object parser loop.
*/
ldblk=ReadBlobLSBLong(image);
if(EOFBlob(image)) break;
if ((ldblk > 9999) || (ldblk < 0))
break;
HDR.Type[3]=ldblk % 10; ldblk /= 10; /* T digit */
HDR.Type[2]=ldblk % 10; ldblk /= 10; /* P digit */
HDR.Type[1]=ldblk % 10; ldblk /= 10; /* O digit */
HDR.Type[0]=ldblk; /* M digit */
if (HDR.Type[3] != 0)
break; /* Data format */
if (HDR.Type[2] != 0)
break; /* Always 0 */
if (HDR.Type[0] == 0)
{
HDR.nRows=ReadBlobLSBLong(image);
HDR.nCols=ReadBlobLSBLong(image);
HDR.imagf=ReadBlobLSBLong(image);
HDR.nameLen=ReadBlobLSBLong(image);
endian=LSBEndian;
}
else
{
HDR.nRows=ReadBlobMSBLong(image);
HDR.nCols=ReadBlobMSBLong(image);
HDR.imagf=ReadBlobMSBLong(image);
HDR.nameLen=ReadBlobMSBLong(image);
endian=MSBEndian;
}
if ((HDR.imagf != 0) && (HDR.imagf != 1))
break;
if (HDR.nameLen > 0xFFFF)
return(DestroyImageList(image));
for (i=0; i < (ssize_t) HDR.nameLen; i++)
{
int
byte;
/*
Skip matrix name.
*/
byte=ReadBlobByte(image);
if (byte == EOF)
{
ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
image->filename);
break;
}
}
image->columns=(size_t) HDR.nRows;
image->rows=(size_t) HDR.nCols;
if ((image->columns == 0) || (image->rows == 0))
return(DestroyImageList(image));
if (image_info->ping != MagickFalse)
{
Swap(image->columns,image->rows);
if(HDR.imagf==1) ldblk *= 2;
SeekBlob(image, HDR.nCols*ldblk, SEEK_CUR);
if ((image->columns == 0) || (image->rows == 0))
return(image->previous == (Image *) NULL ? DestroyImageList(image)
: image);
goto skip_reading_current;
}
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
return(DestroyImageList(image));
(void) SetImageBackgroundColor(image,exception);
(void) SetImageColorspace(image,GRAYColorspace,exception);
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
return(DestroyImageList(image));
switch(HDR.Type[1])
{
case 0:
format_type=FloatingPointQuantumFormat;
depth=64;
break;
case 1:
format_type=FloatingPointQuantumFormat;
depth=32;
break;
case 2:
format_type=UnsignedQuantumFormat;
depth=16;
break;
case 3:
format_type=SignedQuantumFormat;
depth=16;
break;
case 4:
format_type=UnsignedQuantumFormat;
depth=8;
break;
default:
format_type=UnsignedQuantumFormat;
depth=8;
break;
}
image->depth=depth;
if (HDR.Type[0] != 0)
SetQuantumEndian(image,quantum_info,MSBEndian);
status=SetQuantumFormat(image,quantum_info,format_type);
status=SetQuantumDepth(image,quantum_info,depth);
status=SetQuantumEndian(image,quantum_info,endian);
SetQuantumScale(quantum_info,1.0);
pixels=(unsigned char *) GetQuantumPixels(quantum_info);
for (y=0; y < (ssize_t) image->rows; y++)
{
register Quantum
*magick_restrict q;
count=ReadBlob(image,depth/8*image->columns,(char *) pixels);
if (count == -1)
break;
q=QueueAuthenticPixels(image,0,image->rows-y-1,image->columns,1,
exception);
if (q == (Quantum *) NULL)
break;
(void) ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
GrayQuantum,pixels,exception);
if ((HDR.Type[1] == 2) || (HDR.Type[1] == 3))
FixSignedValues(image,q,(int) image->columns);
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (HDR.imagf == 1)
for (y=0; y < (ssize_t) image->rows; y++)
{
/*
Read complex pixels.
*/
count=ReadBlob(image,depth/8*image->columns,(char *) pixels);
if (count == -1)
break;
if (HDR.Type[1] == 0)
InsertComplexDoubleRow(image,(double *) pixels,y,0,0,exception);
else
InsertComplexFloatRow(image,(float *) pixels,y,0,0,exception);
}
if (quantum_info != (QuantumInfo *) NULL)
quantum_info=DestroyQuantumInfo(quantum_info);
if (EOFBlob(image) != MagickFalse)
{
ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
image->filename);
break;
}
rotated_image=RotateImage(image,90.0,exception);
if (rotated_image != (Image *) NULL)
{
rotated_image->page.x=0;
rotated_image->page.y=0;
rotated_image->colors = image->colors;
DestroyBlob(rotated_image);
rotated_image->blob=ReferenceBlob(image->blob);
AppendImageToList(&image,rotated_image);
DeleteImageFromList(&image);
}
/*
Proceed to next image.
*/
if (image_info->number_scenes != 0)
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
/*
Allocate next image structure.
*/
skip_reading_current:
if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
AcquireNextImage(image_info,image,exception);
if (GetNextImageInList(image) == (Image *) NULL)
{
status=MagickFalse;
break;
}
image=SyncNextImageInList(image);
status=SetImageProgress(image,LoadImagesTag,TellBlob(image),
GetBlobSize(image));
if (status == MagickFalse)
break;
}
(void) CloseBlob(image);
if (status == MagickFalse)
return(DestroyImageList(image));
return(GetFirstImageInList(image));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d M A T L A B i m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadMATImage() reads an MAT X image file and returns it. It
% allocates the memory necessary for the new Image structure and returns a
% pointer to the new image.
%
% The format of the ReadMATImage method is:
%
% Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: Method ReadMATImage returns a pointer to the image after
% reading. A null image is returned if there is a memory shortage or if
% the image cannot be read.
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o exception: return any errors or warnings in this structure.
%
*/
static Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
Image *image, *image2=NULL,
*rotated_image;
register Quantum *q;
unsigned int status;
MATHeader MATLAB_HDR;
size_t size;
size_t CellType;
QuantumInfo *quantum_info;
ImageInfo *clone_info;
int i;
ssize_t ldblk;
unsigned char *BImgBuff = NULL;
double MinVal, MaxVal;
unsigned z, z2;
unsigned Frames;
int logging;
int sample_size;
MagickOffsetType filepos=0x80;
unsigned int (*ReadBlobXXXLong)(Image *image);
unsigned short (*ReadBlobXXXShort)(Image *image);
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
logging = LogMagickEvent(CoderEvent,GetMagickModule(),"enter");
/*
Open image file.
*/
image = AcquireImage(image_info,exception);
image2 = (Image *) NULL;
status = OpenBlob(image_info, image, ReadBinaryBlobMode, exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Read MATLAB image.
*/
quantum_info=(QuantumInfo *) NULL;
clone_info=(ImageInfo *) NULL;
if (ReadBlob(image,124,(unsigned char *) &MATLAB_HDR.identific) != 124)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
if (strncmp(MATLAB_HDR.identific,"MATLAB",6) != 0)
{
image=ReadMATImageV4(image_info,image,exception);
if (image == NULL)
{
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
return((Image *) NULL);
}
goto END_OF_READING;
}
MATLAB_HDR.Version = ReadBlobLSBShort(image);
if(ReadBlob(image,2,(unsigned char *) &MATLAB_HDR.EndianIndicator) != 2)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
if (logging)
(void) LogMagickEvent(CoderEvent,GetMagickModule()," Endian %c%c",
MATLAB_HDR.EndianIndicator[0],MATLAB_HDR.EndianIndicator[1]);
if (!strncmp(MATLAB_HDR.EndianIndicator, "IM", 2))
{
ReadBlobXXXLong = ReadBlobLSBLong;
ReadBlobXXXShort = ReadBlobLSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
image->endian = LSBEndian;
}
else if (!strncmp(MATLAB_HDR.EndianIndicator, "MI", 2))
{
ReadBlobXXXLong = ReadBlobMSBLong;
ReadBlobXXXShort = ReadBlobMSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
image->endian = MSBEndian;
}
else
{
MATLAB_KO:
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
}
filepos = TellBlob(image);
while(filepos < (MagickOffsetType) GetBlobSize(image) && !EOFBlob(image)) /* object parser loop */
{
Frames = 1;
if(filepos > (MagickOffsetType) GetBlobSize(image) || filepos < 0)
break;
if(SeekBlob(image,filepos,SEEK_SET) != filepos) break;
/* printf("pos=%X\n",TellBlob(image)); */
MATLAB_HDR.DataType = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
MATLAB_HDR.ObjectSize = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
if((MagickSizeType) (MATLAB_HDR.ObjectSize+filepos) >= GetBlobSize(image))
goto MATLAB_KO;
filepos += (MagickOffsetType) MATLAB_HDR.ObjectSize + 4 + 4;
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
clone_info=CloneImageInfo(image_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
image2 = image;
#if defined(MAGICKCORE_ZLIB_DELEGATE)
if(MATLAB_HDR.DataType == miCOMPRESSED)
{
image2 = decompress_block(image,&MATLAB_HDR.ObjectSize,clone_info,exception);
if(image2==NULL) continue;
MATLAB_HDR.DataType = ReadBlobXXXLong(image2); /* replace compressed object type. */
}
#endif
if (MATLAB_HDR.DataType != miMATRIX)
{
clone_info=DestroyImageInfo(clone_info);
#if defined(MAGICKCORE_ZLIB_DELEGATE)
if (image2 != image)
DeleteImageFromList(&image2);
#endif
continue; /* skip another objects. */
}
MATLAB_HDR.unknown1 = ReadBlobXXXLong(image2);
MATLAB_HDR.unknown2 = ReadBlobXXXLong(image2);
MATLAB_HDR.unknown5 = ReadBlobXXXLong(image2);
MATLAB_HDR.StructureClass = MATLAB_HDR.unknown5 & 0xFF;
MATLAB_HDR.StructureFlag = (MATLAB_HDR.unknown5>>8) & 0xFF;
MATLAB_HDR.unknown3 = ReadBlobXXXLong(image2);
if(image!=image2)
MATLAB_HDR.unknown4 = ReadBlobXXXLong(image2); /* ??? don't understand why ?? */
MATLAB_HDR.unknown4 = ReadBlobXXXLong(image2);
MATLAB_HDR.DimFlag = ReadBlobXXXLong(image2);
MATLAB_HDR.SizeX = ReadBlobXXXLong(image2);
MATLAB_HDR.SizeY = ReadBlobXXXLong(image2);
switch(MATLAB_HDR.DimFlag)
{
case 8: z2=z=1; break; /* 2D matrix*/
case 12: z2=z = ReadBlobXXXLong(image2); /* 3D matrix RGB*/
(void) ReadBlobXXXLong(image2);
if(z!=3)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(CoderError,
"MultidimensionalMatricesAreNotSupported");
}
break;
case 16: z2=z = ReadBlobXXXLong(image2); /* 4D matrix animation */
if(z!=3 && z!=1)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(CoderError,
"MultidimensionalMatricesAreNotSupported");
}
Frames = ReadBlobXXXLong(image2);
if (Frames == 0)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
}
if (AcquireMagickResource(ListLengthResource,Frames) == MagickFalse)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(ResourceLimitError,"ListLengthExceedsLimit");
}
break;
default:
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
}
MATLAB_HDR.Flag1 = ReadBlobXXXShort(image2);
MATLAB_HDR.NameFlag = ReadBlobXXXShort(image2);
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.StructureClass %d",MATLAB_HDR.StructureClass);
if (MATLAB_HDR.StructureClass != mxCHAR_CLASS &&
MATLAB_HDR.StructureClass != mxSINGLE_CLASS && /* float + complex float */
MATLAB_HDR.StructureClass != mxDOUBLE_CLASS && /* double + complex double */
MATLAB_HDR.StructureClass != mxINT8_CLASS &&
MATLAB_HDR.StructureClass != mxUINT8_CLASS && /* uint8 + uint8 3D */
MATLAB_HDR.StructureClass != mxINT16_CLASS &&
MATLAB_HDR.StructureClass != mxUINT16_CLASS && /* uint16 + uint16 3D */
MATLAB_HDR.StructureClass != mxINT32_CLASS &&
MATLAB_HDR.StructureClass != mxUINT32_CLASS && /* uint32 + uint32 3D */
MATLAB_HDR.StructureClass != mxINT64_CLASS &&
MATLAB_HDR.StructureClass != mxUINT64_CLASS) /* uint64 + uint64 3D */
{
if ((image2 != (Image*) NULL) && (image2 != image))
{
CloseBlob(image2);
DeleteImageFromList(&image2);
}
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
ThrowReaderException(CoderError,"UnsupportedCellTypeInTheMatrix");
}
switch (MATLAB_HDR.NameFlag)
{
case 0:
size = ReadBlobXXXLong(image2); /* Object name string size */
size = 4 * (((size_t) size + 3 + 1) / 4);
(void) SeekBlob(image2, size, SEEK_CUR);
break;
case 1:
case 2:
case 3:
case 4:
(void) ReadBlob(image2, 4, (unsigned char *) &size); /* Object name string */
break;
default:
goto MATLAB_KO;
}
CellType = ReadBlobXXXLong(image2); /* Additional object type */
if (logging)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.CellType: %.20g",(double) CellType);
/* data size */
if (ReadBlob(image2, 4, (unsigned char *) &size) != 4)
goto MATLAB_KO;
NEXT_FRAME:
switch (CellType)
{
case miINT8:
case miUINT8:
sample_size = 8;
if(MATLAB_HDR.StructureFlag & FLAG_LOGICAL)
image->depth = 1;
else
image->depth = 8; /* Byte type cell */
ldblk = (ssize_t) MATLAB_HDR.SizeX;
break;
case miINT16:
case miUINT16:
sample_size = 16;
image->depth = 16; /* Word type cell */
ldblk = (ssize_t) (2 * MATLAB_HDR.SizeX);
break;
case miINT32:
case miUINT32:
sample_size = 32;
image->depth = 32; /* Dword type cell */
ldblk = (ssize_t) (4 * MATLAB_HDR.SizeX);
break;
case miINT64:
case miUINT64:
sample_size = 64;
image->depth = 64; /* Qword type cell */
ldblk = (ssize_t) (8 * MATLAB_HDR.SizeX);
break;
case miSINGLE:
sample_size = 32;
image->depth = 32; /* double type cell */
(void) SetImageOption(clone_info,"quantum:format","floating-point");
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex float type cell */
}
ldblk = (ssize_t) (4 * MATLAB_HDR.SizeX);
break;
case miDOUBLE:
sample_size = 64;
image->depth = 64; /* double type cell */
(void) SetImageOption(clone_info,"quantum:format","floating-point");
DisableMSCWarning(4127)
if (sizeof(double) != 8)
RestoreMSCWarning
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(CoderError, "IncompatibleSizeOfDouble");
}
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex double type cell */
}
ldblk = (ssize_t) (8 * MATLAB_HDR.SizeX);
break;
default:
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (clone_info)
clone_info=DestroyImageInfo(clone_info);
ThrowReaderException(CoderError, "UnsupportedCellTypeInTheMatrix");
}
(void) sample_size;
image->columns = MATLAB_HDR.SizeX;
image->rows = MATLAB_HDR.SizeY;
image->colors = GetQuantumRange(image->depth);
if (image->columns == 0 || image->rows == 0)
goto MATLAB_KO;
if((unsigned int)ldblk*MATLAB_HDR.SizeY > MATLAB_HDR.ObjectSize)
goto MATLAB_KO;
/* Image is gray when no complex flag is set and 2D Matrix */
if ((MATLAB_HDR.DimFlag == 8) &&
((MATLAB_HDR.StructureFlag & FLAG_COMPLEX) == 0))
{
image->type=GrayscaleType;
SetImageColorspace(image,GRAYColorspace,exception);
}
/*
If ping is true, then only set image size and colors without
reading any image data.
*/
if (image_info->ping)
{
size_t temp = image->columns;
image->columns = image->rows;
image->rows = temp;
goto done_reading; /* !!!!!! BAD !!!! */
}
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
return(DestroyImageList(image));
}
(void) SetImageBackgroundColor(image,exception);
quantum_info=AcquireQuantumInfo(clone_info,image);
if (quantum_info == (QuantumInfo *) NULL)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
}
/* ----- Load raster data ----- */
BImgBuff = (unsigned char *) AcquireQuantumMemory((size_t) (ldblk),sizeof(double)); /* Ldblk was set in the check phase */
if (BImgBuff == NULL)
{
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (quantum_info != (QuantumInfo *) NULL)
quantum_info=DestroyQuantumInfo(quantum_info);
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) memset(BImgBuff,0,ldblk*sizeof(double));
MinVal = 0;
MaxVal = 0;
if (CellType==miDOUBLE || CellType==miSINGLE) /* Find Min and Max Values for floats */
{
CalcMinMax(image2,image_info->endian,MATLAB_HDR.SizeX,MATLAB_HDR.SizeY,
CellType,ldblk,BImgBuff,&quantum_info->minimum,
&quantum_info->maximum);
}
/* Main loop for reading all scanlines */
if(z==1) z=0; /* read grey scanlines */
/* else read color scanlines */
do
{
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
q=GetAuthenticPixels(image,0,MATLAB_HDR.SizeY-i-1,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT set image pixels returns unexpected NULL on a row %u.", (unsigned)(MATLAB_HDR.SizeY-i-1));
goto done_reading; /* Skip image rotation, when cannot set image pixels */
}
if(ReadBlob(image2,ldblk,(unsigned char *)BImgBuff) != (ssize_t) ldblk)
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT cannot read scanrow %u from a file.", (unsigned)(MATLAB_HDR.SizeY-i-1));
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (clone_info != (ImageInfo *) NULL)
clone_info=DestroyImageInfo(clone_info);
if (quantum_info != (QuantumInfo *) NULL)
quantum_info=DestroyQuantumInfo(quantum_info);
BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff);
ThrowReaderException(CorruptImageError,"UnexpectedEndOfFile");
}
if((CellType==miINT8 || CellType==miUINT8) && (MATLAB_HDR.StructureFlag & FLAG_LOGICAL))
{
FixLogical((unsigned char *)BImgBuff,ldblk);
if(ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,z2qtype[z],BImgBuff,exception) <= 0)
{
ImportQuantumPixelsFailed:
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT failed to ImportQuantumPixels for a row %u", (unsigned)(MATLAB_HDR.SizeY-i-1));
break;
}
}
else
{
if(ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,z2qtype[z],BImgBuff,exception) <= 0)
goto ImportQuantumPixelsFailed;
if (z<=1 && /* fix only during a last pass z==0 || z==1 */
(CellType==miINT8 || CellType==miINT16 || CellType==miINT32 || CellType==miINT64))
FixSignedValues(image,q,MATLAB_HDR.SizeX);
}
if (!SyncAuthenticPixels(image,exception))
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT failed to sync image pixels for a row %u", (unsigned)(MATLAB_HDR.SizeY-i-1));
goto ExitLoop;
}
}
} while(z-- >= 2);
ExitLoop:
if (i != (long) MATLAB_HDR.SizeY)
goto END_OF_READING;
/* Read complex part of numbers here */
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* Find Min and Max Values for complex parts of floats */
CellType = ReadBlobXXXLong(image2); /* Additional object type */
i = ReadBlobXXXLong(image2); /* size of a complex part - toss away*/
if (CellType==miDOUBLE || CellType==miSINGLE)
{
CalcMinMax(image2, image_info->endian, MATLAB_HDR.SizeX, MATLAB_HDR.SizeY, CellType, ldblk, BImgBuff, &MinVal, &MaxVal);
}
if (CellType==miDOUBLE)
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
ReadBlobDoublesXXX(image2, ldblk, (double *)BImgBuff);
if (EOFBlob(image) != MagickFalse)
break;
InsertComplexDoubleRow(image, (double *)BImgBuff, i, MinVal, MaxVal,
exception);
}
if (CellType==miSINGLE)
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
ReadBlobFloatsXXX(image2, ldblk, (float *)BImgBuff);
if (EOFBlob(image) != MagickFalse)
break;
InsertComplexFloatRow(image,(float *)BImgBuff,i,MinVal,MaxVal,
exception);
}
}
/* Image is gray when no complex flag is set and 2D Matrix AGAIN!!! */
if ((MATLAB_HDR.DimFlag == 8) &&
((MATLAB_HDR.StructureFlag & FLAG_COMPLEX) == 0))
image->type=GrayscaleType;
if (image->depth == 1)
image->type=BilevelType;
if(image2==image)
image2 = NULL; /* Remove shadow copy to an image before rotation. */
/* Rotate image. */
rotated_image = RotateImage(image, 90.0, exception);
if (rotated_image != (Image *) NULL)
{
/* Remove page offsets added by RotateImage */
rotated_image->page.x=0;
rotated_image->page.y=0;
rotated_image->colors = image->colors;
DestroyBlob(rotated_image);
rotated_image->blob=ReferenceBlob(image->blob);
AppendImageToList(&image,rotated_image);
DeleteImageFromList(&image);
}
done_reading:
if(image2!=NULL)
if(image2!=image)
{
DeleteImageFromList(&image2);
if(clone_info)
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
}
}
if (EOFBlob(image) != MagickFalse)
break;
/* Allocate next image structure. */
if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
AcquireNextImage(image_info,image,exception);
if (image->next == (Image *) NULL) break;
image=SyncNextImageInList(image);
image->columns=image->rows=0;
image->colors=0;
/* row scan buffer is no longer needed */
RelinquishMagickMemory(BImgBuff);
BImgBuff = NULL;
if (quantum_info != (QuantumInfo *) NULL)
quantum_info=DestroyQuantumInfo(quantum_info);
if(--Frames>0)
{
z = z2;
if(image2==NULL) image2 = image;
if(!EOFBlob(image) && TellBlob(image)<filepos)
goto NEXT_FRAME;
}
if ((image2!=NULL) && (image2!=image)) /* Does shadow temporary decompressed image exist? */
{
/* CloseBlob(image2); */
DeleteImageFromList(&image2);
if(clone_info)
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
}
}
if (clone_info)
clone_info=DestroyImageInfo(clone_info);
}
END_OF_READING:
RelinquishMagickMemory(BImgBuff);
if (quantum_info != (QuantumInfo *) NULL)
quantum_info=DestroyQuantumInfo(quantum_info);
CloseBlob(image);
{
Image *p;
ssize_t scene=0;
/*
Rewind list, removing any empty images while rewinding.
*/
p=image;
image=NULL;
while (p != (Image *) NULL)
{
Image *tmp=p;
if ((p->rows == 0) || (p->columns == 0)) {
p=p->previous;
if (tmp == image2)
image2=(Image *) NULL;
DeleteImageFromList(&tmp);
} else {
image=p;
p=p->previous;
}
}
/*
Fix scene numbers
*/
for (p=image; p != (Image *) NULL; p=p->next)
p->scene=scene++;
}
if(clone_info != NULL) /* cleanup garbage file from compression */
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
DestroyImageInfo(clone_info);
clone_info = NULL;
}
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),"return");
if ((image != image2) && (image2 != (Image *) NULL))
image2=DestroyImage(image2);
if (image == (Image *) NULL)
ThrowReaderException(CorruptImageError,"ImproperImageHeader")
return(image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method RegisterMATImage adds attributes for the MAT image format to
% the list of supported formats. The attributes include the image format
% tag, a method to read and/or write the format, whether the format
% supports the saving of more than one frame to the same file or blob,
% whether the format supports native in-memory I/O, and a brief
% description of the format.
%
% The format of the RegisterMATImage method is:
%
% size_t RegisterMATImage(void)
%
*/
ModuleExport size_t RegisterMATImage(void)
{
MagickInfo
*entry;
entry=AcquireMagickInfo("MAT","MAT","MATLAB level 5 image format");
entry->decoder=(DecodeImageHandler *) ReadMATImage;
entry->encoder=(EncodeImageHandler *) WriteMATImage;
entry->flags^=CoderBlobSupportFlag;
entry->flags|=CoderDecoderSeekableStreamFlag;
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n r e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method UnregisterMATImage removes format registrations made by the
% MAT module from the list of supported formats.
%
% The format of the UnregisterMATImage method is:
%
% UnregisterMATImage(void)
%
*/
ModuleExport void UnregisterMATImage(void)
{
(void) UnregisterMagickInfo("MAT");
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e M A T L A B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function WriteMATImage writes an Matlab matrix to a file.
%
% The format of the WriteMATImage method is:
%
% MagickBooleanType WriteMATImage(const ImageInfo *image_info,
% Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows.
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o image: A pointer to an Image structure.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType WriteMATImage(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
char
MATLAB_HDR[0x80];
MagickBooleanType
status;
MagickOffsetType
scene;
size_t
imageListLength;
struct tm
utc_time;
time_t
current_time;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
(void) LogMagickEvent(CoderEvent,GetMagickModule(),"enter MAT");
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
if (status == MagickFalse)
return(MagickFalse);
image->depth=8;
current_time=GetMagickTime();
GetMagickUTCtime(¤t_time,&utc_time);
(void) memset(MATLAB_HDR,' ',MagickMin(sizeof(MATLAB_HDR),124));
FormatLocaleString(MATLAB_HDR,sizeof(MATLAB_HDR),
"MATLAB 5.0 MAT-file, Platform: %s, Created on: %s %s %2d %2d:%2d:%2d %d",
OsDesc,DayOfWTab[utc_time.tm_wday],MonthsTab[utc_time.tm_mon],
utc_time.tm_mday,utc_time.tm_hour,utc_time.tm_min,
utc_time.tm_sec,utc_time.tm_year+1900);
MATLAB_HDR[0x7C]=0;
MATLAB_HDR[0x7D]=1;
MATLAB_HDR[0x7E]='I';
MATLAB_HDR[0x7F]='M';
(void) WriteBlob(image,sizeof(MATLAB_HDR),(unsigned char *) MATLAB_HDR);
scene=0;
imageListLength=GetImageListLength(image);
do
{
char
padding;
MagickBooleanType
is_gray;
QuantumInfo
*quantum_info;
size_t
data_size;
unsigned char
*pixels;
unsigned int
z;
(void) TransformImageColorspace(image,sRGBColorspace,exception);
is_gray=SetImageGray(image,exception);
z=(is_gray != MagickFalse) ? 0 : 3;
/*
Store MAT header.
*/
data_size = image->rows * image->columns;
if (is_gray == MagickFalse)
data_size*=3;
padding=((unsigned char)(data_size-1) & 0x7) ^ 0x7;
(void) WriteBlobLSBLong(image,miMATRIX);
(void) WriteBlobLSBLong(image,(unsigned int) data_size+padding+
((is_gray != MagickFalse) ? 48 : 56));
(void) WriteBlobLSBLong(image,0x6); /* 0x88 */
(void) WriteBlobLSBLong(image,0x8); /* 0x8C */
(void) WriteBlobLSBLong(image,0x6); /* 0x90 */
(void) WriteBlobLSBLong(image,0);
(void) WriteBlobLSBLong(image,0x5); /* 0x98 */
(void) WriteBlobLSBLong(image,(is_gray != MagickFalse) ? 0x8 : 0xC); /* 0x9C - DimFlag */
(void) WriteBlobLSBLong(image,(unsigned int) image->rows); /* x: 0xA0 */
(void) WriteBlobLSBLong(image,(unsigned int) image->columns); /* y: 0xA4 */
if (is_gray == MagickFalse)
{
(void) WriteBlobLSBLong(image,3); /* z: 0xA8 */
(void) WriteBlobLSBLong(image,0);
}
(void) WriteBlobLSBShort(image,1); /* 0xB0 */
(void) WriteBlobLSBShort(image,1); /* 0xB2 */
(void) WriteBlobLSBLong(image,'M'); /* 0xB4 */
(void) WriteBlobLSBLong(image,0x2); /* 0xB8 */
(void) WriteBlobLSBLong(image,(unsigned int) data_size); /* 0xBC */
/*
Store image data.
*/
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
pixels=(unsigned char *) GetQuantumPixels(quantum_info);
do
{
const Quantum
*p;
ssize_t
y;
for (y=0; y < (ssize_t) image->columns; y++)
{
size_t
length;
p=GetVirtualPixels(image,y,0,1,image->rows,exception);
if (p == (const Quantum *) NULL)
break;
length=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info,
z2qtype[z],pixels,exception);
if (length != image->columns)
break;
if (WriteBlob(image,image->rows,pixels) != (ssize_t) image->rows)
break;
}
if (y < (ssize_t) image->columns)
break;
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
} while (z-- >= 2);
while (padding-- > 0)
(void) WriteBlobByte(image,0);
quantum_info=DestroyQuantumInfo(quantum_info);
if (GetNextImageInList(image) == (Image *) NULL)
break;
image=SyncNextImageInList(image);
status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength);
if (status == MagickFalse)
break;
} while (image_info->adjoin != MagickFalse);
(void) CloseBlob(image);
return(status);
}
|