Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Your IP : 3.142.197.111
/* SPDX-License-Identifier: GPL-2.0-only */
/*******************************************************************************
*
* Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
* Copyright(c) 2013 - 2014 Intel Corporation.
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
******************************************************************************/
#ifndef _VIRTCHNL_H_
#define _VIRTCHNL_H_
/* Description:
* This header file describes the VF-PF communication protocol used
* by the drivers for all devices starting from our 40G product line
*
* Admin queue buffer usage:
* desc->opcode is always aqc_opc_send_msg_to_pf
* flags, retval, datalen, and data addr are all used normally.
* The Firmware copies the cookie fields when sending messages between the
* PF and VF, but uses all other fields internally. Due to this limitation,
* we must send all messages as "indirect", i.e. using an external buffer.
*
* All the VSI indexes are relative to the VF. Each VF can have maximum of
* three VSIs. All the queue indexes are relative to the VSI. Each VF can
* have a maximum of sixteen queues for all of its VSIs.
*
* The PF is required to return a status code in v_retval for all messages
* except RESET_VF, which does not require any response. The return value
* is of status_code type, defined in the shared type.h.
*
* In general, VF driver initialization should roughly follow the order of
* these opcodes. The VF driver must first validate the API version of the
* PF driver, then request a reset, then get resources, then configure
* queues and interrupts. After these operations are complete, the VF
* driver may start its queues, optionally add MAC and VLAN filters, and
* process traffic.
*/
/* START GENERIC DEFINES
* Need to ensure the following enums and defines hold the same meaning and
* value in current and future projects
*/
/* Error Codes */
enum virtchnl_status_code {
VIRTCHNL_STATUS_SUCCESS = 0,
VIRTCHNL_STATUS_ERR_PARAM = -5,
VIRTCHNL_STATUS_ERR_NO_MEMORY = -18,
VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38,
VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39,
VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40,
VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64,
};
/* Backward compatibility */
#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0
#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1
#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2
#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3
#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4
#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5
#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6
#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7
enum virtchnl_link_speed {
VIRTCHNL_LINK_SPEED_UNKNOWN = 0,
VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
};
/* for hsplit_0 field of Rx HMC context */
/* deprecated with AVF 1.0 */
enum virtchnl_rx_hsplit {
VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0,
VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1,
VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2,
VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8,
};
/* END GENERIC DEFINES */
/* Opcodes for VF-PF communication. These are placed in the v_opcode field
* of the virtchnl_msg structure.
*/
enum virtchnl_ops {
/* The PF sends status change events to VFs using
* the VIRTCHNL_OP_EVENT opcode.
* VFs send requests to the PF using the other ops.
* Use of "advanced opcode" features must be negotiated as part of capabilities
* exchange and are not considered part of base mode feature set.
*/
VIRTCHNL_OP_UNKNOWN = 0,
VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
VIRTCHNL_OP_RESET_VF = 2,
VIRTCHNL_OP_GET_VF_RESOURCES = 3,
VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
VIRTCHNL_OP_ENABLE_QUEUES = 8,
VIRTCHNL_OP_DISABLE_QUEUES = 9,
VIRTCHNL_OP_ADD_ETH_ADDR = 10,
VIRTCHNL_OP_DEL_ETH_ADDR = 11,
VIRTCHNL_OP_ADD_VLAN = 12,
VIRTCHNL_OP_DEL_VLAN = 13,
VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
VIRTCHNL_OP_GET_STATS = 15,
VIRTCHNL_OP_RSVD = 16,
VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
VIRTCHNL_OP_SET_RSS_HENA = 26,
VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
VIRTCHNL_OP_REQUEST_QUEUES = 29,
VIRTCHNL_OP_ENABLE_CHANNELS = 30,
VIRTCHNL_OP_DISABLE_CHANNELS = 31,
VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
};
/* These macros are used to generate compilation errors if a structure/union
* is not exactly the correct length. It gives a divide by zero error if the
* structure/union is not of the correct size, otherwise it creates an enum
* that is never used.
*/
#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
/* Virtual channel message descriptor. This overlays the admin queue
* descriptor. All other data is passed in external buffers.
*/
struct virtchnl_msg {
u8 pad[8]; /* AQ flags/opcode/len/retval fields */
enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
enum virtchnl_status_code v_retval; /* ditto for desc->retval */
u32 vfid; /* used by PF when sending to VF */
};
VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
/* Message descriptions and data structures. */
/* VIRTCHNL_OP_VERSION
* VF posts its version number to the PF. PF responds with its version number
* in the same format, along with a return code.
* Reply from PF has its major/minor versions also in param0 and param1.
* If there is a major version mismatch, then the VF cannot operate.
* If there is a minor version mismatch, then the VF can operate but should
* add a warning to the system log.
*
* This enum element MUST always be specified as == 1, regardless of other
* changes in the API. The PF must always respond to this message without
* error regardless of version mismatch.
*/
#define VIRTCHNL_VERSION_MAJOR 1
#define VIRTCHNL_VERSION_MINOR 1
#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0
struct virtchnl_version_info {
u32 major;
u32 minor;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
/* VIRTCHNL_OP_RESET_VF
* VF sends this request to PF with no parameters
* PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
* until reset completion is indicated. The admin queue must be reinitialized
* after this operation.
*
* When reset is complete, PF must ensure that all queues in all VSIs associated
* with the VF are stopped, all queue configurations in the HMC are set to 0,
* and all MAC and VLAN filters (except the default MAC address) on all VSIs
* are cleared.
*/
/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
* vsi_type should always be 6 for backward compatibility. Add other fields
* as needed.
*/
enum virtchnl_vsi_type {
VIRTCHNL_VSI_TYPE_INVALID = 0,
VIRTCHNL_VSI_SRIOV = 6,
};
/* VIRTCHNL_OP_GET_VF_RESOURCES
* Version 1.0 VF sends this request to PF with no parameters
* Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
* PF responds with an indirect message containing
* virtchnl_vf_resource and one or more
* virtchnl_vsi_resource structures.
*/
struct virtchnl_vsi_resource {
u16 vsi_id;
u16 num_queue_pairs;
enum virtchnl_vsi_type vsi_type;
u16 qset_handle;
u8 default_mac_addr[ETH_ALEN];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
/* VF capability flags
* VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
* TX/RX Checksum offloading and TSO for non-tunnelled packets.
*/
#define VIRTCHNL_VF_OFFLOAD_L2 0x00000001
#define VIRTCHNL_VF_OFFLOAD_IWARP 0x00000002
#define VIRTCHNL_VF_OFFLOAD_RSVD 0x00000004
#define VIRTCHNL_VF_OFFLOAD_RSS_AQ 0x00000008
#define VIRTCHNL_VF_OFFLOAD_RSS_REG 0x00000010
#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR 0x00000020
#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES 0x00000040
#define VIRTCHNL_VF_OFFLOAD_VLAN 0x00010000
#define VIRTCHNL_VF_OFFLOAD_RX_POLLING 0x00020000
#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 0x00040000
#define VIRTCHNL_VF_OFFLOAD_RSS_PF 0X00080000
#define VIRTCHNL_VF_OFFLOAD_ENCAP 0X00100000
#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM 0X00200000
#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM 0X00400000
#define VIRTCHNL_VF_OFFLOAD_ADQ 0X00800000
/* Define below the capability flags that are not offloads */
#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED 0x00000080
#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
VIRTCHNL_VF_OFFLOAD_VLAN | \
VIRTCHNL_VF_OFFLOAD_RSS_PF)
struct virtchnl_vf_resource {
u16 num_vsis;
u16 num_queue_pairs;
u16 max_vectors;
u16 max_mtu;
u32 vf_cap_flags;
u32 rss_key_size;
u32 rss_lut_size;
struct virtchnl_vsi_resource vsi_res[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
/* VIRTCHNL_OP_CONFIG_TX_QUEUE
* VF sends this message to set up parameters for one TX queue.
* External data buffer contains one instance of virtchnl_txq_info.
* PF configures requested queue and returns a status code.
*/
/* Tx queue config info */
struct virtchnl_txq_info {
u16 vsi_id;
u16 queue_id;
u16 ring_len; /* number of descriptors, multiple of 8 */
u16 headwb_enabled; /* deprecated with AVF 1.0 */
u64 dma_ring_addr;
u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
/* VIRTCHNL_OP_CONFIG_RX_QUEUE
* VF sends this message to set up parameters for one RX queue.
* External data buffer contains one instance of virtchnl_rxq_info.
* PF configures requested queue and returns a status code.
*/
/* Rx queue config info */
struct virtchnl_rxq_info {
u16 vsi_id;
u16 queue_id;
u32 ring_len; /* number of descriptors, multiple of 32 */
u16 hdr_size;
u16 splithdr_enabled; /* deprecated with AVF 1.0 */
u32 databuffer_size;
u32 max_pkt_size;
u32 pad1;
u64 dma_ring_addr;
enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
u32 pad2;
};
VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
/* VIRTCHNL_OP_CONFIG_VSI_QUEUES
* VF sends this message to set parameters for all active TX and RX queues
* associated with the specified VSI.
* PF configures queues and returns status.
* If the number of queues specified is greater than the number of queues
* associated with the VSI, an error is returned and no queues are configured.
*/
struct virtchnl_queue_pair_info {
/* NOTE: vsi_id and queue_id should be identical for both queues. */
struct virtchnl_txq_info txq;
struct virtchnl_rxq_info rxq;
};
VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
struct virtchnl_vsi_queue_config_info {
u16 vsi_id;
u16 num_queue_pairs;
u32 pad;
struct virtchnl_queue_pair_info qpair[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
/* VIRTCHNL_OP_REQUEST_QUEUES
* VF sends this message to request the PF to allocate additional queues to
* this VF. Each VF gets a guaranteed number of queues on init but asking for
* additional queues must be negotiated. This is a best effort request as it
* is possible the PF does not have enough queues left to support the request.
* If the PF cannot support the number requested it will respond with the
* maximum number it is able to support. If the request is successful, PF will
* then reset the VF to institute required changes.
*/
/* VF resource request */
struct virtchnl_vf_res_request {
u16 num_queue_pairs;
};
/* VIRTCHNL_OP_CONFIG_IRQ_MAP
* VF uses this message to map vectors to queues.
* The rxq_map and txq_map fields are bitmaps used to indicate which queues
* are to be associated with the specified vector.
* The "other" causes are always mapped to vector 0.
* PF configures interrupt mapping and returns status.
*/
struct virtchnl_vector_map {
u16 vsi_id;
u16 vector_id;
u16 rxq_map;
u16 txq_map;
u16 rxitr_idx;
u16 txitr_idx;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
struct virtchnl_irq_map_info {
u16 num_vectors;
struct virtchnl_vector_map vecmap[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
/* VIRTCHNL_OP_ENABLE_QUEUES
* VIRTCHNL_OP_DISABLE_QUEUES
* VF sends these message to enable or disable TX/RX queue pairs.
* The queues fields are bitmaps indicating which queues to act upon.
* (Currently, we only support 16 queues per VF, but we make the field
* u32 to allow for expansion.)
* PF performs requested action and returns status.
*/
struct virtchnl_queue_select {
u16 vsi_id;
u16 pad;
u32 rx_queues;
u32 tx_queues;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
/* VIRTCHNL_OP_ADD_ETH_ADDR
* VF sends this message in order to add one or more unicast or multicast
* address filters for the specified VSI.
* PF adds the filters and returns status.
*/
/* VIRTCHNL_OP_DEL_ETH_ADDR
* VF sends this message in order to remove one or more unicast or multicast
* filters for the specified VSI.
* PF removes the filters and returns status.
*/
struct virtchnl_ether_addr {
u8 addr[ETH_ALEN];
u8 pad[2];
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
struct virtchnl_ether_addr_list {
u16 vsi_id;
u16 num_elements;
struct virtchnl_ether_addr list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
/* VIRTCHNL_OP_ADD_VLAN
* VF sends this message to add one or more VLAN tag filters for receives.
* PF adds the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
/* VIRTCHNL_OP_DEL_VLAN
* VF sends this message to remove one or more VLAN tag filters for receives.
* PF removes the filters and returns status.
* If a port VLAN is configured by the PF, this operation will return an
* error to the VF.
*/
struct virtchnl_vlan_filter_list {
u16 vsi_id;
u16 num_elements;
u16 vlan_id[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
* VF sends VSI id and flags.
* PF returns status code in retval.
* Note: we assume that broadcast accept mode is always enabled.
*/
struct virtchnl_promisc_info {
u16 vsi_id;
u16 flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
#define FLAG_VF_UNICAST_PROMISC 0x00000001
#define FLAG_VF_MULTICAST_PROMISC 0x00000002
/* VIRTCHNL_OP_GET_STATS
* VF sends this message to request stats for the selected VSI. VF uses
* the virtchnl_queue_select struct to specify the VSI. The queue_id
* field is ignored by the PF.
*
* PF replies with struct eth_stats in an external buffer.
*/
/* VIRTCHNL_OP_CONFIG_RSS_KEY
* VIRTCHNL_OP_CONFIG_RSS_LUT
* VF sends these messages to configure RSS. Only supported if both PF
* and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
* configuration negotiation. If this is the case, then the RSS fields in
* the VF resource struct are valid.
* Both the key and LUT are initialized to 0 by the PF, meaning that
* RSS is effectively disabled until set up by the VF.
*/
struct virtchnl_rss_key {
u16 vsi_id;
u16 key_len;
u8 key[1]; /* RSS hash key, packed bytes */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
struct virtchnl_rss_lut {
u16 vsi_id;
u16 lut_entries;
u8 lut[1]; /* RSS lookup table */
};
VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
/* VIRTCHNL_OP_GET_RSS_HENA_CAPS
* VIRTCHNL_OP_SET_RSS_HENA
* VF sends these messages to get and set the hash filter enable bits for RSS.
* By default, the PF sets these to all possible traffic types that the
* hardware supports. The VF can query this value if it wants to change the
* traffic types that are hashed by the hardware.
*/
struct virtchnl_rss_hena {
u64 hena;
};
VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
/* VIRTCHNL_OP_ENABLE_CHANNELS
* VIRTCHNL_OP_DISABLE_CHANNELS
* VF sends these messages to enable or disable channels based on
* the user specified queue count and queue offset for each traffic class.
* This struct encompasses all the information that the PF needs from
* VF to create a channel.
*/
struct virtchnl_channel_info {
u16 count; /* number of queues in a channel */
u16 offset; /* queues in a channel start from 'offset' */
u32 pad;
u64 max_tx_rate;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
struct virtchnl_tc_info {
u32 num_tc;
u32 pad;
struct virtchnl_channel_info list[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
/* VIRTCHNL_ADD_CLOUD_FILTER
* VIRTCHNL_DEL_CLOUD_FILTER
* VF sends these messages to add or delete a cloud filter based on the
* user specified match and action filters. These structures encompass
* all the information that the PF needs from the VF to add/delete a
* cloud filter.
*/
struct virtchnl_l4_spec {
u8 src_mac[ETH_ALEN];
u8 dst_mac[ETH_ALEN];
__be16 vlan_id;
__be16 pad; /* reserved for future use */
__be32 src_ip[4];
__be32 dst_ip[4];
__be16 src_port;
__be16 dst_port;
};
VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
union virtchnl_flow_spec {
struct virtchnl_l4_spec tcp_spec;
u8 buffer[128]; /* reserved for future use */
};
VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
enum virtchnl_action {
/* action types */
VIRTCHNL_ACTION_DROP = 0,
VIRTCHNL_ACTION_TC_REDIRECT,
};
enum virtchnl_flow_type {
/* flow types */
VIRTCHNL_TCP_V4_FLOW = 0,
VIRTCHNL_TCP_V6_FLOW,
};
struct virtchnl_filter {
union virtchnl_flow_spec data;
union virtchnl_flow_spec mask;
enum virtchnl_flow_type flow_type;
enum virtchnl_action action;
u32 action_meta;
u8 field_flags;
};
VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
/* VIRTCHNL_OP_EVENT
* PF sends this message to inform the VF driver of events that may affect it.
* No direct response is expected from the VF, though it may generate other
* messages in response to this one.
*/
enum virtchnl_event_codes {
VIRTCHNL_EVENT_UNKNOWN = 0,
VIRTCHNL_EVENT_LINK_CHANGE,
VIRTCHNL_EVENT_RESET_IMPENDING,
VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
};
#define PF_EVENT_SEVERITY_INFO 0
#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255
struct virtchnl_pf_event {
enum virtchnl_event_codes event;
union {
/* If the PF driver does not support the new speed reporting
* capabilities then use link_event else use link_event_adv to
* get the speed and link information. The ability to understand
* new speeds is indicated by setting the capability flag
* VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
* in virtchnl_vf_resource struct and can be used to determine
* which link event struct to use below.
*/
struct {
enum virtchnl_link_speed link_speed;
bool link_status;
} link_event;
struct {
/* link_speed provided in Mbps */
u32 link_speed;
u8 link_status;
} link_event_adv;
} event_data;
int severity;
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
/* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
* VF uses this message to request PF to map IWARP vectors to IWARP queues.
* The request for this originates from the VF IWARP driver through
* a client interface between VF LAN and VF IWARP driver.
* A vector could have an AEQ and CEQ attached to it although
* there is a single AEQ per VF IWARP instance in which case
* most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
* There will never be a case where there will be multiple CEQs attached
* to a single vector.
* PF configures interrupt mapping and returns status.
*/
struct virtchnl_iwarp_qv_info {
u32 v_idx; /* msix_vector */
u16 ceq_idx;
u16 aeq_idx;
u8 itr_idx;
};
VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
struct virtchnl_iwarp_qvlist_info {
u32 num_vectors;
struct virtchnl_iwarp_qv_info qv_info[1];
};
VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
/* VF reset states - these are written into the RSTAT register:
* VFGEN_RSTAT on the VF
* When the PF initiates a reset, it writes 0
* When the reset is complete, it writes 1
* When the PF detects that the VF has recovered, it writes 2
* VF checks this register periodically to determine if a reset has occurred,
* then polls it to know when the reset is complete.
* If either the PF or VF reads the register while the hardware
* is in a reset state, it will return DEADBEEF, which, when masked
* will result in 3.
*/
enum virtchnl_vfr_states {
VIRTCHNL_VFR_INPROGRESS = 0,
VIRTCHNL_VFR_COMPLETED,
VIRTCHNL_VFR_VFACTIVE,
};
/**
* virtchnl_vc_validate_vf_msg
* @ver: Virtchnl version info
* @v_opcode: Opcode for the message
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* validate msg format against struct for each opcode
*/
static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
u8 *msg, u16 msglen)
{
bool err_msg_format = false;
int valid_len = 0;
/* Validate message length. */
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
valid_len = sizeof(struct virtchnl_version_info);
break;
case VIRTCHNL_OP_RESET_VF:
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
if (VF_IS_V11(ver))
valid_len = sizeof(u32);
break;
case VIRTCHNL_OP_CONFIG_TX_QUEUE:
valid_len = sizeof(struct virtchnl_txq_info);
break;
case VIRTCHNL_OP_CONFIG_RX_QUEUE:
valid_len = sizeof(struct virtchnl_rxq_info);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
if (msglen >= valid_len) {
struct virtchnl_vsi_queue_config_info *vqc =
(struct virtchnl_vsi_queue_config_info *)msg;
valid_len += (vqc->num_queue_pairs *
sizeof(struct
virtchnl_queue_pair_info));
if (vqc->num_queue_pairs == 0)
err_msg_format = true;
}
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
valid_len = sizeof(struct virtchnl_irq_map_info);
if (msglen >= valid_len) {
struct virtchnl_irq_map_info *vimi =
(struct virtchnl_irq_map_info *)msg;
valid_len += (vimi->num_vectors *
sizeof(struct virtchnl_vector_map));
if (vimi->num_vectors == 0)
err_msg_format = true;
}
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
case VIRTCHNL_OP_DISABLE_QUEUES:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
case VIRTCHNL_OP_DEL_ETH_ADDR:
valid_len = sizeof(struct virtchnl_ether_addr_list);
if (msglen >= valid_len) {
struct virtchnl_ether_addr_list *veal =
(struct virtchnl_ether_addr_list *)msg;
valid_len += veal->num_elements *
sizeof(struct virtchnl_ether_addr);
if (veal->num_elements == 0)
err_msg_format = true;
}
break;
case VIRTCHNL_OP_ADD_VLAN:
case VIRTCHNL_OP_DEL_VLAN:
valid_len = sizeof(struct virtchnl_vlan_filter_list);
if (msglen >= valid_len) {
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
valid_len += vfl->num_elements * sizeof(u16);
if (vfl->num_elements == 0)
err_msg_format = true;
}
break;
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
valid_len = sizeof(struct virtchnl_promisc_info);
break;
case VIRTCHNL_OP_GET_STATS:
valid_len = sizeof(struct virtchnl_queue_select);
break;
case VIRTCHNL_OP_IWARP:
/* These messages are opaque to us and will be validated in
* the RDMA client code. We just need to check for nonzero
* length. The firmware will enforce max length restrictions.
*/
if (msglen)
valid_len = msglen;
else
err_msg_format = true;
break;
case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
break;
case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
if (msglen >= valid_len) {
struct virtchnl_iwarp_qvlist_info *qv =
(struct virtchnl_iwarp_qvlist_info *)msg;
if (qv->num_vectors == 0) {
err_msg_format = true;
break;
}
valid_len += ((qv->num_vectors - 1) *
sizeof(struct virtchnl_iwarp_qv_info));
}
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
valid_len = sizeof(struct virtchnl_rss_key);
if (msglen >= valid_len) {
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
valid_len += vrk->key_len - 1;
}
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
valid_len = sizeof(struct virtchnl_rss_lut);
if (msglen >= valid_len) {
struct virtchnl_rss_lut *vrl =
(struct virtchnl_rss_lut *)msg;
valid_len += vrl->lut_entries - 1;
}
break;
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
break;
case VIRTCHNL_OP_SET_RSS_HENA:
valid_len = sizeof(struct virtchnl_rss_hena);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
valid_len = sizeof(struct virtchnl_vf_res_request);
break;
case VIRTCHNL_OP_ENABLE_CHANNELS:
valid_len = sizeof(struct virtchnl_tc_info);
if (msglen >= valid_len) {
struct virtchnl_tc_info *vti =
(struct virtchnl_tc_info *)msg;
valid_len += (vti->num_tc - 1) *
sizeof(struct virtchnl_channel_info);
if (vti->num_tc == 0)
err_msg_format = true;
}
break;
case VIRTCHNL_OP_DISABLE_CHANNELS:
break;
case VIRTCHNL_OP_ADD_CLOUD_FILTER:
valid_len = sizeof(struct virtchnl_filter);
break;
case VIRTCHNL_OP_DEL_CLOUD_FILTER:
valid_len = sizeof(struct virtchnl_filter);
break;
/* These are always errors coming from the VF. */
case VIRTCHNL_OP_EVENT:
case VIRTCHNL_OP_UNKNOWN:
default:
return VIRTCHNL_STATUS_ERR_PARAM;
}
/* few more checks */
if (err_msg_format || valid_len != msglen)
return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
return 0;
}
#endif /* _VIRTCHNL_H_ */
|