Linux ip-172-26-7-228 5.4.0-1103-aws #111~18.04.1-Ubuntu SMP Tue May 23 20:04:10 UTC 2023 x86_64
Your IP : 3.145.186.132
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SRC_UTIL_INL_H_
#define SRC_UTIL_INL_H_
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#include "util.h"
#include <cstring>
#if defined(_MSC_VER)
#include <intrin.h>
#define BSWAP_2(x) _byteswap_ushort(x)
#define BSWAP_4(x) _byteswap_ulong(x)
#define BSWAP_8(x) _byteswap_uint64(x)
#else
#define BSWAP_2(x) ((x) << 8) | ((x) >> 8)
#define BSWAP_4(x) \
(((x) & 0xFF) << 24) | \
(((x) & 0xFF00) << 8) | \
(((x) >> 8) & 0xFF00) | \
(((x) >> 24) & 0xFF)
#define BSWAP_8(x) \
(((x) & 0xFF00000000000000ull) >> 56) | \
(((x) & 0x00FF000000000000ull) >> 40) | \
(((x) & 0x0000FF0000000000ull) >> 24) | \
(((x) & 0x000000FF00000000ull) >> 8) | \
(((x) & 0x00000000FF000000ull) << 8) | \
(((x) & 0x0000000000FF0000ull) << 24) | \
(((x) & 0x000000000000FF00ull) << 40) | \
(((x) & 0x00000000000000FFull) << 56)
#endif
namespace node {
template <typename T>
ListNode<T>::ListNode() : prev_(this), next_(this) {}
template <typename T>
ListNode<T>::~ListNode() {
Remove();
}
template <typename T>
void ListNode<T>::Remove() {
prev_->next_ = next_;
next_->prev_ = prev_;
prev_ = this;
next_ = this;
}
template <typename T>
bool ListNode<T>::IsEmpty() const {
return prev_ == this;
}
template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::Iterator::operator*() const {
return ContainerOf(M, node_);
}
template <typename T, ListNode<T> (T::*M)>
const typename ListHead<T, M>::Iterator&
ListHead<T, M>::Iterator::operator++() {
node_ = node_->next_;
return *this;
}
template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
return node_ != that.node_;
}
template <typename T, ListNode<T> (T::*M)>
ListHead<T, M>::~ListHead() {
while (IsEmpty() == false)
head_.next_->Remove();
}
template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::MoveBack(ListHead* that) {
if (IsEmpty())
return;
ListNode<T>* to = &that->head_;
head_.next_->prev_ = to->prev_;
to->prev_->next_ = head_.next_;
head_.prev_->next_ = to;
to->prev_ = head_.prev_;
head_.prev_ = &head_;
head_.next_ = &head_;
}
template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushBack(T* element) {
ListNode<T>* that = &(element->*M);
head_.prev_->next_ = that;
that->prev_ = head_.prev_;
that->next_ = &head_;
head_.prev_ = that;
}
template <typename T, ListNode<T> (T::*M)>
void ListHead<T, M>::PushFront(T* element) {
ListNode<T>* that = &(element->*M);
head_.next_->prev_ = that;
that->prev_ = &head_;
that->next_ = head_.next_;
head_.next_ = that;
}
template <typename T, ListNode<T> (T::*M)>
bool ListHead<T, M>::IsEmpty() const {
return head_.IsEmpty();
}
template <typename T, ListNode<T> (T::*M)>
T* ListHead<T, M>::PopFront() {
if (IsEmpty())
return nullptr;
ListNode<T>* node = head_.next_;
node->Remove();
return ContainerOf(M, node);
}
template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
return Iterator(head_.next_);
}
template <typename T, ListNode<T> (T::*M)>
typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
return Iterator(const_cast<ListNode<T>*>(&head_));
}
template <typename Inner, typename Outer>
ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
Inner* pointer)
: pointer_(reinterpret_cast<Outer*>(
reinterpret_cast<uintptr_t>(pointer) -
reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(0)->*field)))) {
}
template <typename Inner, typename Outer>
template <typename TypeName>
ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
return static_cast<TypeName*>(pointer_);
}
template <typename Inner, typename Outer>
inline ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
Inner* pointer) {
return ContainerOfHelper<Inner, Outer>(field, pointer);
}
template <class TypeName>
inline v8::Local<TypeName> PersistentToLocal(
v8::Isolate* isolate,
const v8::Persistent<TypeName>& persistent) {
if (persistent.IsWeak()) {
return WeakPersistentToLocal(isolate, persistent);
} else {
return StrongPersistentToLocal(persistent);
}
}
template <class TypeName>
inline v8::Local<TypeName> StrongPersistentToLocal(
const v8::Persistent<TypeName>& persistent) {
return *reinterpret_cast<v8::Local<TypeName>*>(
const_cast<v8::Persistent<TypeName>*>(&persistent));
}
template <class TypeName>
inline v8::Local<TypeName> WeakPersistentToLocal(
v8::Isolate* isolate,
const v8::Persistent<TypeName>& persistent) {
return v8::Local<TypeName>::New(isolate, persistent);
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length).ToLocalChecked();
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const signed char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length).ToLocalChecked();
}
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const unsigned char* data,
int length) {
return v8::String::NewFromOneByte(isolate,
reinterpret_cast<const uint8_t*>(data),
v8::NewStringType::kNormal,
length).ToLocalChecked();
}
template <typename TypeName>
void Wrap(v8::Local<v8::Object> object, TypeName* pointer) {
CHECK_EQ(false, object.IsEmpty());
CHECK_GT(object->InternalFieldCount(), 0);
object->SetAlignedPointerInInternalField(0, pointer);
}
void ClearWrap(v8::Local<v8::Object> object) {
Wrap<void>(object, nullptr);
}
template <typename TypeName>
TypeName* Unwrap(v8::Local<v8::Object> object) {
CHECK_EQ(false, object.IsEmpty());
CHECK_GT(object->InternalFieldCount(), 0);
void* pointer = object->GetAlignedPointerFromInternalField(0);
return static_cast<TypeName*>(pointer);
}
void SwapBytes16(char* data, size_t nbytes) {
CHECK_EQ(nbytes % 2, 0);
#if defined(_MSC_VER)
int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint16_t);
if (align == 0) {
// MSVC has no strict aliasing, and is able to highly optimize this case.
uint16_t* data16 = reinterpret_cast<uint16_t*>(data);
size_t len16 = nbytes / sizeof(*data16);
for (size_t i = 0; i < len16; i++) {
data16[i] = BSWAP_2(data16[i]);
}
return;
}
#endif
uint16_t temp;
for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
memcpy(&temp, &data[i], sizeof(temp));
temp = BSWAP_2(temp);
memcpy(&data[i], &temp, sizeof(temp));
}
}
void SwapBytes32(char* data, size_t nbytes) {
CHECK_EQ(nbytes % 4, 0);
#if defined(_MSC_VER)
int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint32_t);
// MSVC has no strict aliasing, and is able to highly optimize this case.
if (align == 0) {
uint32_t* data32 = reinterpret_cast<uint32_t*>(data);
size_t len32 = nbytes / sizeof(*data32);
for (size_t i = 0; i < len32; i++) {
data32[i] = BSWAP_4(data32[i]);
}
return;
}
#endif
uint32_t temp;
for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
memcpy(&temp, &data[i], sizeof(temp));
temp = BSWAP_4(temp);
memcpy(&data[i], &temp, sizeof(temp));
}
}
void SwapBytes64(char* data, size_t nbytes) {
CHECK_EQ(nbytes % 8, 0);
#if defined(_MSC_VER)
int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint64_t);
if (align == 0) {
// MSVC has no strict aliasing, and is able to highly optimize this case.
uint64_t* data64 = reinterpret_cast<uint64_t*>(data);
size_t len64 = nbytes / sizeof(*data64);
for (size_t i = 0; i < len64; i++) {
data64[i] = BSWAP_8(data64[i]);
}
return;
}
#endif
uint64_t temp;
for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
memcpy(&temp, &data[i], sizeof(temp));
temp = BSWAP_8(temp);
memcpy(&data[i], &temp, sizeof(temp));
}
}
char ToLower(char c) {
return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
}
bool StringEqualNoCase(const char* a, const char* b) {
do {
if (*a == '\0')
return *b == '\0';
if (*b == '\0')
return *a == '\0';
} while (ToLower(*a++) == ToLower(*b++));
return false;
}
bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
for (size_t i = 0; i < length; i++) {
if (ToLower(a[i]) != ToLower(b[i]))
return false;
if (a[i] == '\0')
return true;
}
return true;
}
inline size_t MultiplyWithOverflowCheck(size_t a, size_t b) {
size_t ret = a * b;
if (a != 0)
CHECK_EQ(b, ret / a);
return ret;
}
// These should be used in our code as opposed to the native
// versions as they abstract out some platform and or
// compiler version specific functionality.
// malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
// that the standard allows them to either return a unique pointer or a
// nullptr for zero-sized allocation requests. Normalize by always using
// a nullptr.
template <typename T>
T* UncheckedRealloc(T* pointer, size_t n) {
size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
if (full_size == 0) {
free(pointer);
return nullptr;
}
void* allocated = realloc(pointer, full_size);
if (UNLIKELY(allocated == nullptr)) {
// Tell V8 that memory is low and retry.
LowMemoryNotification();
allocated = realloc(pointer, full_size);
}
return static_cast<T*>(allocated);
}
// As per spec realloc behaves like malloc if passed nullptr.
template <typename T>
inline T* UncheckedMalloc(size_t n) {
if (n == 0) n = 1;
return UncheckedRealloc<T>(nullptr, n);
}
template <typename T>
inline T* UncheckedCalloc(size_t n) {
if (n == 0) n = 1;
MultiplyWithOverflowCheck(sizeof(T), n);
return static_cast<T*>(calloc(n, sizeof(T)));
}
template <typename T>
inline T* Realloc(T* pointer, size_t n) {
T* ret = UncheckedRealloc(pointer, n);
if (n > 0) CHECK_NE(ret, nullptr);
return ret;
}
template <typename T>
inline T* Malloc(size_t n) {
T* ret = UncheckedMalloc<T>(n);
if (n > 0) CHECK_NE(ret, nullptr);
return ret;
}
template <typename T>
inline T* Calloc(size_t n) {
T* ret = UncheckedCalloc<T>(n);
if (n > 0) CHECK_NE(ret, nullptr);
return ret;
}
// Shortcuts for char*.
inline char* Malloc(size_t n) { return Malloc<char>(n); }
inline char* Calloc(size_t n) { return Calloc<char>(n); }
inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); }
inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); }
} // namespace node
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#endif // SRC_UTIL_INL_H_
|